
Anchor-Driven Subchunk Deduplication

Bartłomiej Romański
9LivesData, LLC
Warsaw, Poland

romanski@9livesdata.com

Łukasz Heldt
9LivesData, LLC
Warsaw, Poland

heldt@9livesdata.com

Wojciech Kilian
9LivesData, LLC
Warsaw, Poland

wkilian@9livesdata.com

Krzysztof Lichota
9LivesData, LLC
Warsaw, Poland

lichota@9livesdata.com

Cezary Dubnicki
9LivesData, LLC
Warsaw, Poland

dubnicki@9livesdata.com

ABSTRACT

Data deduplication, implemented usually with content de-
fined chunking (CDC), is today one of key features of ad-
vanced storage systems providing space for backup applica-
tions. Although simple and effective, CDC generates chunks
with sizes clustered around expected chunk size, which is
globally fixed for a given storage system and applies to all
backups. This creates opportunity for improvement, as the
optimal chunk size for deduplication varies not only among
backup datasets, but also within one dataset: long stretches
of unchanged data favor larger chunks, whereas regions of
change prefer smaller ones.

In this work, we present a new algorithm which dedupli-
cates with big chunks as well as with their subchunks using
a deduplication context containing subchunk-to-container-
chunk mappings. When writing data, this context is con-
structed on-the fly with so-called anchor sequences defined
as short sequences of adjacent chunks in a backup stream (a
stream of data produced by backup application containing
backed up files). For each anchor sequence, we generate an
anchor – a special block with set of mappings covering a
contiguous region of the backup stream positioned ahead of
this anchor sequence. If anchor sequences have not changed
between backups, the mappings created with the previous
backup are prefetched and added to the deduplication con-
text. It is of limited size and fits in the main memory unlike
solutions which require keeping all subchunk mappings for
the entire backup stream. At the same time, the context
provides most of mappings needed for subchunk deduplica-
tion. Compared to CDC, the new algorithm results in up to
25% dedup ratio improvement achieved with almost 3 times
larger average block size, as verified by simulations driven
by real backup traces.

Categories and Subject Descriptors

E.5 [Files]: Backup/ recovery; H.3.1 [Information Stor-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SYSTOR ’11May 30 – June 1, Haifa, Israel
Copyright 2011 ACM 978-1-4503-0773-4/11/05 ...$10.00.

age and Retrieval]: Content Analysis and Indexing – In-
dexing methods

General Terms

Algorithms, Performance

Keywords

deduplication, chunking, backup, CAS, CDC

1. INTRODUCTION
The primary value of deduplication is obviously in reduc-

tion of required storage space, which translates into reduced
probability of data loss and significant operational savings
due to reduced power consumption and overall lower facility
costs. However, for these savings to materialize, we need
to consider total storage space necessary to keep not only
backup data, but also all types of metadata (e.g. backup ap-
plication metadata, intermediate level metadata like filesys-
tems and proper back-end metadata used for location of data
and deduplication). Adding metadata to the picture is not
only necessary to estimate the savings from deduplication,
but often changes the relative utility of various deduplication
alternatives in a particular storage system.

Today, the standard technique for dividing backup data
into chunks for deduplication is content defined chunking
(CDC) [21, 26]. It produces variable-length chunks using
Rabin’s fingerprints [28] computed over small fixed-size roll-
ing window to select chunk boundaries. Chunk is cut when
the fingerprint has one of the predefined values. This ap-
proach allows for detection of unchanged chunks after the
original stream of data is modified with insertions and dele-
tions, as unchanged cut points are recalled on the next chun-
ker run. Additional advantage of CDC is that it does not
maintain any state. Moreover, to work well, CDC does not
need to know association between data streams and backups,
nor the backup stream boundaries (i.e. where one backup
stream ends and another one starts). This fits nicely with
the reality of commercial setups, where a standard backup
application usually assumes ”dumb” storage system, which
makes communication of this information to this system im-
possible.

Although the chunks produced by CDC are of variable
length, their actual sizes are clustered around the expected
chunk size value which is a parameter of the CDC algorithm.
When using CDC, for any given sequence of backup streams

and a particular storage system, there exists an optimal ex-
pected chunk value which delivers the best deduplication
ratio. This selection depends on the type and the frequency
of data modifications in subsequent streams, as well as on
metadata overhead imposed on chunk representation. Using
small chunks is not optimal because of metadata overhead,
moreover, small chunks also tend to negatively impact per-
formance. On the other hand, larger chunks are also often
sub-optimal when granularity of modifications in subsequent
backups is fine-grained. These tradeoffs suggest selection of
a moderate expected chunk size which should work well for
a given storage system. However, we can often do better
than that because granularity of change in backup stream
is not constant even with one sequence of backups (not to
mention across multiple series of unrelated backups). That
is, in multiple backups, we have long stretches of data which
do not change for long periods of time for which large chunk
sizes are better, interspersed with regions of change prefer-
ring smaller chunk sizes.

In this work, we describe a new algorithm called anchor-
driven subchunk deduplication. The new algorithm dedupli-
cates on two levels – with large chunks and their subchunks.
Deduplication with large chunks is done using global index
of large chunk hashes. The dedup with subchunks is done
by using a limited deduplication context of subchunk-to-
container-chunk mappings. This context is read from the
storage system and updated dynamically in the process of
writing backup data. The context is small and can be kept
in the main memory. The new approach does not require the
storage system to know backup stream boundaries and rela-
tions, and allows for subchunk dedup across all streams. At
the same time, the context keeps most of subchunk mappings
needed for effective dedup. We have verified these claims by
simulating the new algorithm with a set of backup traces and
comparing the results against the numbers achieved with al-
ternative, previously described algorithms. The remainder
of this paper is organized as follows. The next section dis-
cusses in detail the new deduplication algorithm. Section 3
presents its evaluation based on simulation driven by a set of
real backup traces. Related work is discussed in Section 4,
whereas conclusions and future work are given in Section 5.

2. THE ALGORITHM

2.1 System model
Our storage system is a simplified version of HYDRAstor

[14]. Initially, we assume a single-node system, and only
later, in the evaluation we discuss impact of distributed ar-
chitecture of the modeled system.

The assumed system stores variable-size content-address-
able blocks and exports a traditional file system interface to
be used by backup applications. In this work, we differenti-
ate between chunks and blocks of data. A chunk is usually a
contiguous piece of user data stream with borders defined by
a chunker to maximize deduplication opportunity. A block
is a base unit stored by the system and contains either a
chunk of user data or pointers to other blocks. Pointers are
represented as hash addresses and facilitate building trees
keeping file system structures. Each block has an associated
block-level metadata.

The system supports multiple failure resiliency levels; the
higher resiliency implies the more storage overhead. The
highest resiliency is usually used for metadata.

The system can be accessed by several backup servers
writing and restoring backups with standard backup ap-
plications, which are unaware of special capabilities of the
storage system like deduplication. In the base HYDRAstor
system, backup streams are cut into chunks using the CDC
algorithm and written as blocks to the block store. In the
simplified model we assume that at any given time, no more
than one backup stream is being written.

The system supports on-demand data deletion implement-
ed with per-block reference counting with garbage collection.
Interaction with deletion must be taken into account when
designing a deduplication algorithm.

In such system there are several types of metadata which
should be included in an evaluation of deduplication algo-
rithms: the lowest-level is block metadata including the
content-derived address of this block. Next level metadata
contains pointers belonging to this block. There is also
higher-level metadata associated with file system structures,
for example inode table.

2.2 Deduplication with multiple chunk sizes
Two previous attempts at deduplication with multiple

chunk sizes inspired our work.
A bimodal [15] approach assumes that backup data streams

consist of reasonably long interleaving regions of duplicate
and non-duplicate data and that the fine-grain stream modi-
fications in subsequent backup streams affect repeatedly ar-
eas around borders between such regions. This algorithm
uses two chunk sizes, small and large. By default, all data
is chunked with large chunk size and deduplication is at-
tempted for resulting chunks. If a non-duplicate large chunk
is adjacent to a duplicate large chunk then such sequence of
chunks is considered a transition point and one or a few
more adjacent non-duplicate large chunks are re-chunked
using smaller chunk size. The resulting small chunks are
inserted into the block store to allow for finer-grain dedu-
plication around transition point; while all remaining new
chunks are emitted as large. This algorithm does not need
any additional database of small chunks; instead, it queries
the block store to verify if the block is duplicate before de-
ciding which chunks will be actually cut into smaller chunks
and which should be emitted.

Fingerdiff algorithm [12] assumes that it is aware to which
dataset a given backup belongs to. For each dataset this
algorithm maintains a database of all small chunks encoun-
tered but not necessarily emitted in the latest backup. This
database is in addition to the emitted chunk metadata main-
tained by the block store. Fingerdiff detects duplicates on
small chunk level and coalesces them as much as possible
(with a limit of maximum possible number of small chunks
for all new data).

These two approaches have significant disadvantages. Bi-
modal ”forgets” small chunks in deduplicated large chunks,
which is especially important on borders of regions of change.
Fingerdiff requires a substantial database of all small chunks
seen so far in the latest backups, even though for data which
does not change often it is not useful. This database may
also not fit in the main memory, seriously affecting the per-
formance. Moreover, fingerdiff assumes that storage system
is able to identify relation between backup streams, which
often today is not the case, as explained earlier. Finally,
fingerdiff will not detect duplicates on the small chunk level
across unrelated backup streams.

2.3 Simplified subchunk deduplication
The new algorithm called anchor-driven subchunk dedu-

plication addresses the serious shortcomings of the previous
approaches described above.

In an overview, the deduplication with subchunks looks
as follows. The base deduplication is done with a relatively
large expected chunk size (for example, 64 KB), to ensure
good performance and to keep the size of the global chunks
database manageable. When a big chunk is found not to be
a duplicate, we try to deduplicate its subchunks. They are
defined within a given chunk by running the CDC algorithm
with a lower expected block size. For example, the expected
subchunk size can be 8 KB when the expected chunk size is
64 KB, resulting in 8 subchunks within 1 chunk on average.

Assume that when writing a backup stream, we can create
a global database of all subchunk-to-container-chunk map-
pings. With this assumption, the chunker first produces
large chunks, and the system checks for chunk duplicate by
issuing query to the block store, as in the base system de-
scribed above. For each subchunk of a new, non-duplicate
chunk, we can next look for a relevant mapping in the sub-
chunk database. If such mapping is found, the subchunk
is deduplicated and the address from this mapping is used.
The subchunks which are not deduplicated in this process
can be coalesced and emitted as one large block, as illus-
trated in Figure 1.

This simple ideal method of deduplication with subchunks
is not practical, as it requires fast access to a huge global
database of subchunk-to-container-chunk mappings, which
moreover needs synchronization with chunk and subchunk
additions and deletions. To make deduplication with sub-
chunks realistic, we introduce a notion of subchunk dedupli-
cation context. Compared to global subchunk database, this
context keeps only subset of subchunk-to-container-chunk
mappings limited to those which are most likely to be use-
ful for deduplication of the currently written stream. The
details how this context is constructed and maintained are
given below.

� � �� � ���������	
������

� � �����
����

� � ������	�
�����

Figure 1: Coalescing of adjacent new subchunks.

2.4 Subchunk deduplication context
When deduplicating a backup stream with subchunks,

we usually do not need access to all previously generated
subchunks. Instead, most deduplication can be done with
subchunks from the previous version of this backup which
are ”close” in the backup stream to the current position in
the backup stream being written. Using this observation,
we construct a subchunk deduplication context as a local

RAM cache keeping subchunk-to-container-chunk mappings
for such subchunks. The deduplication context is built on-
the-fly, i.e. when writing a backup stream, with the help of
the so-called anchors.

When writing a backup stream, we look for short se-
quences of 1 to 3 adjacent chunks for which a special anchor
hash has some predefined number of trailing bits equal to
0. These sequences are called anchor sequences. The anchor
hash for one-chunk anchor sequence is the hash of this chunk
itself; for a multi-chunk anchor sequence, the anchor hash
is defined as the hash of individual chunk hashes of each of
anchor sequence chunks. Note that we control frequency of
anchor sequences with the number of trailing bits in this spe-
cial hash which must be 0; the fewer bits, the more frequent
anchor sequences.

The continuous part of backup stream between anchor
sequences is called an anchor window (see Figure 2). Its
size is usually several tens of MBs and the entire backup
stream is covered by disjoint anchor windows. For each
anchor window, there is one associated mapping pack cre-
ated, containing subchunk-to-container-chunk mappings for
all subchunks in this window. Each mapping keeps hashes
of subchunk and the chunk containing it, together with the
position of the subchunk in the big chunk. These packs
together approximate one big global subchunk-to-container-
chunk mapping database; however it does not have to sup-
port fast single mapping retrieval, so it can be stored in the
block store.

For each anchor sequence, we store an anchor which is a
special type of block addressed with anchor hash and keeping
fixed set of pointers 1. These pointers point to mapping
packs corresponding to windows ahead in the stream with
respect to this anchor sequence, as illustrated in Figure 2.

When an anchor sequence and the part of the backup
stream covered by mappings pointed by this anchor have
not changed between backups, the new anchor is identical
to the old one, and the new one will be deduplicated. If data
in this part of the stream has changed, but anchor sequence
blocks are not modified, the new anchor will overwrite the
old one and the old one will be reclaimed. New mapping
packs will be stored, and the old ones will be reclaimed if
there is no more anchors pointing to them. Reclamation of
old mapping packs does not affect readability of old backups
containing subchunks described in such packs; it only dis-
ables deduplication against such subchunks. Additionally,
we need a process of periodic sweep of all anchors (for ex-
ample, once a week), to remove anchors which have not been
used for any deduplication since the last sweep.

2.5 Deduplication with the context
During subsequent backups, when an anchor created pre-

viously is found, we retrieve pointers associated with it and
load pointed mapping packs to update the deduplication
context. In such way, we bring into the deduplication con-
text mappings for data which is likely ahead of the current
position in the stream, so there is a good chance that we can
use these mappings for deduplication soon.

Note that mappings kept in mapping packs (and conse-
quently in the deduplication context) are not synchronized

1Note that based on an anchor hash, we need to be able to
retrieve these pointers, so we need an additional addressing
mode beyond content-addressability. In HYDRAstor this is
achieved with so called searchable blocks, see [14] for details.

������

��	
��

����	�

������

�����

� � � �

����	

������

����	

�
��
�

Figure 2: Anchors with associated entities. Anchor sequences are shaded.

with respect to chunk and subchunk deletions. This means,
that when attempting subchunk deduplication we need to
issue one more query to the block store to verify that the
container chunk still exists there and contains the requested
subchunk. This step is needed because mappings may be
stale and garbage collection may remove unused subchunks.
Only if the data to be deduplicated is present in the block
store, the subchunk is deduplicated and the address from
mapping is used.

An anchor does not have to point to mappings packs that
directly follow its anchor sequence. Instead, an anchor can
point to mappings packs well ahead in a backup stream (as in
Figure 2). This enables fetching necessary mappings before
writing and chunking data which can use them for dedupli-
cation.

Storing pointers to multiple mapping packs with each an-
chor has two major advantages. First, we can prefetch the
deduplication context mappings covering longer region than
just one anchor window. Second, since a new backup is
modified version of the previous backup, individual anchor
sequences can disappear in the new backup. Storing multi-
ple pointers with a single anchor results in storing pointers
to a given mapping pack in multiple anchors. This in turn
reduces chances of missing useful mappings because of a re-
moved anchor sequence.

To recap, the following actions happen while a backup is
being written: (1) subchunk deduplication is performed us-
ing the deduplication context as described above; (2) an-
chors are generated for the current backup, and (3) the
deduplication context is updated with detection of anchors
created previously. Upon detection of an anchor sequence
corresponding to an existing anchor, all packs pointed by
this anchor are read into a local cache building deduplica-
tion context. Since we know which packs are already in the
deduplication context, each pack is loaded only once. At
the same time, a new value of the anchor is computed and
eventually emitted replacing the old one.

2.6 Advantages of subchunk deduplication
In terms of storage overhead, all mapping packs together

occupy space comparable to fingerdiff per-backup databases.
The big difference is that mapping packs are small and can

be combined to build deduplication context which fits in the
main memory, whereas fingerdiff database for a huge backup
is large and will not fit there. Additionally, for fingerdiff we
need to know relations among backup streams and stream
boundaries, whereas anchor-based approach does not require
this knowledge.

Unlike in fingerdiff, the deduplication is not limited to
one stream, because anchors are stored globally in the block
store, so it is possible to identify similar parts of a backup
stream coming from different backup servers or different
clients (for example, operating system files in case of backup
of workstations). In such case, subchunk deduplication works
across unrelated backups.

Compared to bimodal, the new approach allows for more
extensive searching for duplicate data. Unlike bimodal, the
new algorithm checks for deduplication using subchunks en-
countered previously in both non-duplicated and duplicated
chunks, as the subchunk deduplication context contains all
these mappings. Bimodal checks only for subchunks of non-
duplicate chunks adjacent to at least one duplicate chunk in
the stream being written.

The metadata of a block with subchunks delineated is
much smaller than when each subchunk is stored as a sepa-
rate block because subchunks share a lot of block metadata,
for example encryption status and most of the address of
data location on disk.

Additionally, new metadata containing mappings from sub-
chunks to container chunks do not need to have as high
resiliency as block metadata. It is sufficient that these map-
pings are kept with resiliency equal to default resiliency of
user data. If these mappings are lost, the worst case would
be decreased deduplication effectiveness, but on a very lim-
ited scale, as certainly the level of user data resiliency should
not result in likely massive failures.

Using a local context instead of global subchunk database
reduces a chance of detecting subchunk duplicates if the
same small piece of data exists in many independent backup
streams. A good example of this case is a short mail stored
in many mailboxes. However, for most backups this effect
is not substantial, so the proposed subchunk deduplication
should result in deduplication effectiveness close to this de-
livered by the CDC with the expected block size equal to

the subchunk size, but without associated, potentially very
significant, metadata overhead. And even for the worst case
of mail backups, the new algorithm behaves reasonably well,
as shown by experiments in Section 3.

2.7 Details and refinements
After backup removal, it may happen that some subchunks

are dead and need to be also removed, while others are alive
and need to be preserved. For this reason, the garbage col-
lection algorithm needs to be changed to allow identification
of dead chunks and reclamation of their space. To facilitate
subchunk-within-chunk location after space reclamation, we
need to keep a bit vector with each block metadata indicat-
ing which of the original subchunks are still present. More-
over, each subchunk needs to get a small reference counter
(a few bits) to allow subchunk reclamation. Such counter
can be small, because in rare cases when it overflows, such
subchunk will not be reclaimed until the entire block is re-
claimed.

To enable subchunk-based deduplication, we extend the
address format with a subchunk selector. There are multiple
forms of subchunk selector possible. One is just a subchunk
order number. For example, with 8 subchunks in 1 chunk
on the average, it is enough to extend the address with 4
bits, allowing for addressing of the entire chunk and up to
15 individual subchunks.

One possible refinement is adjacent subchunk coalescing
which is done when a large chunk cannot be deduplicated,
but multiple adjacent subchunks can. This can be deter-
mined based solely on mappings, without additional queries
to the block store. In such case we generate only one pointer
to a range of subchunks. To allow this, the subchunk selec-
tor is changed into subchunk range selector which contains
two subchunk numbers – in the example above, we would
extend the address by 1 byte instead of 4 bits.

3. EVALUATION
In this section, we evaluate the proposed subchunk algo-

rithm (further referred to as subchunk) against CDC and
bimodal using three datasets described below.

3.1 Distributed system
Up till now, we have assumed a single node system, as

this assumption allowed for simplified description of our al-
gorithm. In reality, HYDRAstor is a scalable distributed
system. Such system is more likely than a centralized one
to store backups with wide variations of deduplication pat-
terns, so there is a stronger motivation for not using one
expected chunk size for all stored data.

The modeled system uses erasure codes for data resiliency.
On writing, if a chunk being written is found not to be a
duplicate, such new chunk is compressed and erasure-coded
and the obtained fragments are stored on different block
store servers. For user data, the system supports multiple
resiliency levels, while keeping the overall number of frag-
ments produced by erasure coding of each block constant
and equal to 12. The default level introduces 33% overhead
and allows to survive 3 node and disk failures.

A loss of one block with pointers may incapacitate multi-
ple files or even file systems [11], as such blocks can be also
deduplicated. Therefore, all system metadata are kept in
multiple copies. The number of copies is equal to number
of erasure code fragments, i.e. 12. Beyond making all meta-

data practically indestructible, such approach speeds up im-
portant system operations like rebuilding data resiliency and
deletion, as multiple metadata copies are readily available
for parallelization of background tasks even after many node
failures.

3.2 Setup and metrics
Since direct operation on real backup data would have

taken too long, we used a special chunking tool introduced
in [15], to generate compressed backup traces. The tool
dumps all potential cut points and hashes of data chunks
between them. Such preprocessing greatly reduces the size
of test data and the evaluation time.

We define DER (duplication elimination ratio) for a given
dataset and a given algorithm as the total size of all data
stored in the system divided by the total disk space needed.
DER can be calculated without or with metadata included.
We call the former the data-only DER, and the latter the
real DER.

Data-only DER is simple and well defined, and, unlike
real DER, it does not depend on the actual storage system
characteristics. On the other hand, in real DER calculation
all factors that can influence storage needed by a real sys-
tem are taken into account. That includes data redundancy
level, compression ratio and the space needed for all kinds
of metadata. The value of real DER strongly depends on an
actual system model. The metadata overhead of our model
is described in Section 3.6

3.3 Test data
Our experiments are based on 3 datasets described in Ta-

ble 1.

Name Wiki Netware Mail

Number of backups 5 14 32
Avg. backup size 25 GB 78 GB 34 GB
Total size 125 GB 1086 GB 1087 GB

Table 1: Dataset characteristic

The wiki dataset consists of 5 official XML snapshots of
English Wikipedia. Files contain only the newest versions
of regular pages. Change history, special pages, images, etc.
are not included. Snapshots were created quite rarely, on
average once a month. Because of long periods between
backups, low number of backups and the characteristic of
wiki data (fine, frequent changes), deduplication ratio mea-
sured on this dataset is very low. Real DER varies from 1.07
to 1.50 depending on the algorithm chosen.

The next dataset, netware, represents typical backup data.
This is the same dataset that was used in [15]. It consists
of 14 full weekly Netware backups of user directories. Real
DER measured on this dataset varies from 3.18 to 3.67 de-
pending on the used algorithm.

The last dataset, mail, consists of 32 daily snapshots of
mailboxes of 52 consultants at 9LivesData. This is a very
specific dataset. A typical user mailbox does not change
much daily, so deduplication measured on this dataset should
be very high (close to the number of backups). However, a
single snapshot of a user’s mailbox is stored as a tar archive
usually containing thousands of very small files, one mes-
sage per file. Order of these files in a tar archive depends

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 1 2 4 8 16 32 64 128 256 512

D
a

ta
-o

n
ly

 D
E

R

Average block size (KB)

wiki

perfect-context
subchunk

bimodal
CDC

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0.5 1 2 4 8 16 32 64 128 256 512

D
a

ta
-o

n
ly

 D
E

R

Average block size (KB)

netware

perfect-context
subchunk

bimodal
CDC

 0

 10

 20

 30

 40

 50

 60

 70

 0.5 1 2 4 8 16 32 64 128 256 512

D
a

ta
-o

n
ly

 D
E

R

Average block size (KB)

mail

perfect-context
subchunk

bimodal
CDC

 3

 4

 5

 6

 7

 8

 9

 10

 0.5 1 2 4 8 16 32 64 128 256 512

D
a

ta
-o

n
ly

 D
E

R

Average block size (KB)

total

perfect-context
subchunk

bimodal
CDC

Figure 3: Data-only DER as a function of average block size

on tar and filesystem internals and changes slightly from
time to time. If an expected chunk size spans over multiple
files, even slight permutations in their order can adversely
affect many duplicate elimination algorithms. Moreover, the
changing order of data can potentially result in a very high
data fragmentation. Real DER measured on this dataset
varies from 13.14 to 18.45 depending on the algorithm.

An artificial dataset further referenced as total was built
by concatenating all 3 datasets. Real DER for this dataset
varies from 4.38 to 5.06.

3.4 Policies tested
All algorithms have been tested in many possible config-

urations.
The first algorithm, CDC, was tested with the expected

chunk size set to all powers of 2 from 1 KB to 256 KB.
In all experiments we are using CDC variant based on a
combination of boxcar and CDC-32. Window size is equal
to 64 bytes and the maximum chunk size is set to 3

2
of the

expected chunk size. The minimum chunk size is half of the
expected chunk size – our CDC chunker immediately after
cut point skips half of the expected chunk size and then looks
for the next cut point on the level of half of the expected
chunk size.

For bimodal, described in Section 2.2, we have used big
chunks with expected chunk size varying from 8 KB up to
256 KB, and the expected subchunk size that is always 8
times smaller.

The proposed anchor-based deduplication was configured
with the expected chunk size set to all powers of 2 from 8 KB
to 256 KB, and the expected subchunk size always 8 times
smaller. Anchor sequence length was set to 1 chunk. The

average distance between anchor sequences was configured
to 1024 chunks (on average 8192 subchunks). Deduplication
context size was limited to 500, 000 entries (capable to store
mappings from about 64 packs), and pointers to 16 mapping
packs (covering on average 1 GB of real data stream) were
stored with each anchor. Such configuration provides rea-
sonable balance between the DER achieved by the algorithm
and the resources needed to run it.

The algorithm labeled as perfect-context works similarly to
the subchunk but, instead of using anchor-based mechanism,
it puts all encountered mappings directly in the deduplica-
tion context, which in this case is unlimited. Such algorithm
is impractical, but its deduplication is an upper bound for
the subchunk approach.

3.5 Comparison using data-only DER
Figure 3 presents data-only DER as a function of an av-

erage block size. This is for all 3 datasets and for all al-
gorithms. Each chart represents a different dataset, each
curve – a different algorithm, and each point – a different
configuration (different expected chunk size). The idea be-
hind such presentation is that a desired duplicate elimina-
tion algorithm should not only achieve high DER, but also
maintain high average block size, which is necessary to keep
metadata overhead and performance overhead on acceptable
levels. The average block size is defined as the total size of
all unique blocks stored in the system divided by the num-
ber of such blocks (even if a single block appears in many
backup streams, it is still counted as one). The average
block size is slightly shorter than the expected chunk size
(which is a configuration parameter), because our chunker
cuts artificially potentially long blocks if they exceed 3

2
of

the expected chunk size. Without such restriction, the av-
erage block size would be very close to the expected chunk
size.

Naturally, using a smaller block size results in better dedu-
plication if metadata is not included. In almost all cases,
data-only DER is nearly linear in logarithm of an average
block size.

Regardless of the dataset, the proposed algorithm per-
forms better than CDC and the bimodal. While maintaining
big average block size, it performs deduplication on a (much
finer) subchunk level resulting in higher DER. In case of
perfect-context algorithm this is cleanly visible. The dedu-
plication achieved by CDC with X KB chunks is almost
equal to the deduplication achieved by the perfect-context
algorithm with X KB subchunks. Such relation is satisfied
regardless of the expected chunk size used by the perfect-
context algorithm, only the expected subchunk size matters.
However, the perfect-context algorithm needs to maintain a
huge index of all subchunks which requires a lot of resources
and is not easily implementable.

DER achieved by the proposed subchunk algorithm de-
pends mostly on the performance of the anchor-based mech-
anism used for prefetching mappings. The better the an-
chors work, the higher deduplication. As can be seen, the
anchor-based subchunk deduplication is quite close to the
perfect-context algorithm proving that anchor-based mech-
anism for prefetching mappings works reasonably well. We
define the context hit ratio as the number of duplicated sub-
chunks found by the anchor-based mechanism divided by
the number of duplicated subchunks found by the perfect-
context algorithm. Indeed, in the basic configuration (64 KB
chunks and 8 KB subchunks) context hit ratio is quite high
(81% for wiki dataset, 87% for netware, and 99% for mail).

As expected, bimodal performs better than CDC on the
netware data. This is the dataset used in [15], and our
results are consistent with theirs. Surprisingly, on other
datasets DER achieved by bimodal is slightly worse than
DER achieved by CDC. This can happen in case of many
small changes in random places. Big chunk is re-chunked
into small chunks only if it is a neighbor of a duplicated
chunk. If a block is chunked in one backup and does not
change in the next backup stream, such block has to be re-
chunked every time in order not to lose some deduplication
opportunity. Such situation does not happen very often in
netware traces but quite often in wiki and mail resulting in
slightly worse performance of bimodal.

3.6 Comparison using real DER
The picture looks significantly different when all kinds of

metadata are included. In the system model described in
Section 3.1, each block is stored as 12 fragments created with
erasure coding. For most data, 9 are original fragments and
3 are redundant fragments, however blocks with pointers are
kept in 12 copies. Compression level is globally estimated
as a linear function of logarithm of a block size (about 0.77
for 64 KB blocks and about 0.80 for 8 KB blocks). Each
block stored has 112 bytes of metadata associated with it.
All metadata are stored in 12 copies which results in 1344
bytes of metadata overhead per block. In a real system,
blocks with pointers can also be deduplicated resulting in
less metadata overhead (especially for small blocks), but in
the model, we emulate only the worst-case scenario where
blocks with pointers are not deduplicated. Therefore, there

must be a pointer for each chunk appearing in any backup
stream (no matter if this chunk is a duplicate or not), and
all pointers are also stored in 12 copies.

The subchunk algorithm needs extra space for storing
mapping packs. A single mapping contains SHA-1 of a
subchunk (20 bytes long), an index and SHA-1 of a whole
chunk. Since usually a few consecutive subchunks belong to
the same chunk, SHA-1 of a whole chunk can be stored once
for a few subchunks. Thus, a single mapping can be esti-
mated from above by 32 bytes. Mapping packs can be stored
with low resiliency – in case of data loss, DER will slightly
drop to the level of whole-chunk CDC, but the system will
remain fully functional. Therefore, in our experiments we
have assumed that the resiliency of mapping packs is the
same as the resiliency of user data.

Figure 4 presents real DER as a function of an average
block size stored in a system. When all kinds of metadata are
included in DER calculations, lowering block size results in
better deduplication only until some point, after which extra
space needed for storing metadata exceeds space gained by
better deduplication.

For each dataset and for each algorithm there is some op-
timal block size resulting in the highest possible real DER.
With a given algorithm (and without lowering metadata
overhead, which is usually not an easy task), we cannot get
better DER. Of course, the optimal block size varies heavily
depending on the chosen dataset. Using different expected
chunk sizes for various datasets needs extra manual con-
figuration and may break global deduplication – duplicates
cannot be found between two streams chunked with different
chunking policies.

For CDC, the optimal expected chunk size is equal to 8 KB
for wiki (DER=1.20), 16 KB for netware (DER=3.18), and
32 KB for mail (DER=14.89). Average chunk size equal
to 16 KB sounds as a reasonable global choice for all these
datasets. On artificial total dataset it achieves DER=4.39.

Bimodal performs well on netware dataset – for 32 KB
big chunk and 4 KB subchunk it achieves DER=3.38 (6%
improvement over CDC). However, it performs rather poorly
on wiki (DER=1.07 at 32 KB big chunks) and mail (DER=
13.14 at 64 KB big chunks). On the total dataset expected
big chunk size equal to 32 KB is the best choice (DER=4.38).

The performance achieved by the proposed subchunk al-
gorithm is significantly higher. For the wiki dataset, the
optimal average block size is 16 KB resulting in DER=1.50
which is a 25% improvement over the optimal CDC. For the
netware dataset, the optimal average block size is 32 KB
resulting in DER=3.67 which is a 15% improvement over
CDC. Also for the mail dataset the optimal subchunk al-
gorithm uses 64 KB blocks and gives DER=18.45 which is
a 24% improvement over the optimal CDC. For the total
dataset, the subchunk algorithm performs best with the ex-
pected block size equal to 64 KB (DER=5.06, a 15% im-
provement over CDC). As chunk size becomes very small,
the performance of the subchunk algorithm gets worse and
close to CDC, or even below CDC on mail traces. This is
because for small chunks (e.g. 8 KB) subchunk is very small
(e.g. 1 KB) which leads to very short average block size and
results in too much metadata.

3.7 Low metadata overhead
Although our research is focused on systems with high

metadata overhead such as HYDRAstor, the proposed al-

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

mail

perfect-context
subchunk
bimodal
CDC

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

netware

perfect-context
subchunk
bimodal
CDC

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

total

perfect-context
subchunk
bimodal
CDC

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

wiki

perfect-context
subchunk
bimodal
CDC

Figure 4: Real DER as a function of average block size

gorithm can be used also for systems with very different
characteristics. We have tested the algorithm with a system
model with minimal metadata overhead, which is probably
the worst case for the algorithm. In this model all data and
metadata is stored with only 33% overhead and the pointer
size is reduced from 20 to 8 bytes.

Figure 5 presents the results. For wiki dataset the pro-
posed algorithm is much better than CDC for all tested block
sizes. For netware and mail datasets the proposed algorithm
works better than CDC for block sizes equal to or higher
than 16 KB. If we consider all datasets together (total), the
new algorithm offers better dedup for block sizes of 8 KB
and longer. However, the best dedup is provided by very
short block sizes (1 KB and 2 KB). For those, we have not
tested our algorithm, as the collected traces do not contain
cut points for subchunks shorter than 1 KB. In general, for
shorter blocks the extra overhead of storing mapping packs
is higher than the benefits from performing the deduplica-
tion at the subblock level. We note here, that very short
blocks may be optimal for dedup, but usually they are not
used because they negatively impact the performance and
require big indices for their location.

In the remainder of this paper we continue to focus our
attention on systems with high overhead like HYDRAstor.

3.8 Reading performance
Deduplicating backup data may lead to backups which are

no longer stored as contiguous streams but instead they con-
sist of many small chunks of data scattered throughout the
system. Such fragmentation results in more disk operations
(seeks) needed during reads.

Highly scalable storage systems typically have a lot of re-

sources and more disk seeking usually will not affect neg-
atively the performance, especially if only one or just few
streams are read at the same time. On the other hand,
when designing a duplication algorithm, its impact on data
fragmentation should be evaluated. Data fragmentation is
a broad subject, mostly out of scope of this paper, but we
present here results of a basic evaluation to show that the
proposed algorithm does not result in a worse fragmentation
than alternative solutions.

To evaluate disk reading performance, we have simplified
model of a storage system assuming that all blocks are stored
in a single contiguous file placed on a single physical disk.
All new (not duplicated) blocks are written at the end of
the file, while duplicated blocks are simply skipped. In this
model we do not take into consideration storing any meta-
data. We simulate reading in the following way. Blocks
are requested one by one in the order of appearing in the
backup stream. When the block is being fetched from disk,
we extend the read operation to read also a number of fol-
lowing blocks. The expected single read size is 256 KB. All
blocks that fit in this limit are loaded in a read cache and the
next block is loaded if and only if half of it fits in the limit
(this, a bit strange, condition can avoid problem of rounding
down the number of prefetched blocks). Size of the cache is
limited to 1 GB. If a block is already present in the cache,
we do not need an extra IO operation. We use the average
number of IO operations necessary to read 1 MB of data
from the last (the most fragmented) backup as a measure of
fragmentation.

In case of the subchunk algorithm, the model is slightly
different. We follow the same strategy, but instead of using
big blocks, we operate on subchunks because the system is

 5

 10

 15

 20

 25

 30

 35

 40

 45

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

mail

perfect-context
subchunk

bimodal
CDC

 2.5

 3

 3.5

 4

 4.5

 5

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

netware

perfect-context
subchunk

bimodal
CDC

 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

total

perfect-context
subchunk

bimodal
CDC

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0.5 1 2 4 8 16 32 64 128 256 512

R
e

a
l
D

E
R

Average block size (KB)

wiki

perfect-context
subchunk

bimodal
CDC

Figure 5: Real DER as a function of average block size on a system with low metadata overhead

capable of reading individual subchunks.
To compare all algorithms, for each of them we have cho-

sen the best settings in terms of real DER (64 KB chunks
and 8 KB subchunks for subchunk algorithm, 32 KB big
chunks and 4 KB small chunks for bimodal and 16 KB
chunks for CDC). Figure 6 presents real DER for each algo-
rithm against the average number of disk operations needed
to read 1 MB from the last (the most fragmented) backup.

The results strongly depend on the dataset. For netware,
the subchunk algorithm results in the lowest fragmentation
and the highest real DER, which is the best case. This is
a good news as this trace should reflect a typical backup
data. Generally, there should be a trade-off between dedu-
plication and fragmentation. Better dedup should result in
more fragmentation but as we can see there are exceptions.

For mail and wiki traces the subchunk algorithm fragmen-
tation is always between the other two algorithms fragmen-
tation, but the real DER is always the highest. For these
traces we pay in fragmentation for what we get in the im-
proved deduplication.

Another factor that can potentially affect the read perfor-
mance is the average chunk size defined as the total size of
all data streams stored in the system divided by the total
number of pointers. In average chunk size calculation du-
plicates are counted several times, unlike in average block
calculation. Shorter average chunk means that for the same
amount of data more pointers have to be stored and pro-
cessed.

Tables 2 and 3 show the average block size and the av-
erage chunk size respectively for the best instance of each
algorithm, and additionally for bimodal with the 64 KB big
chunk. This instance shows effectiveness of bimodal, as the

64 KB big chunk bimodal results in only slightly lower dedup
ratio than the best bimodal, but delivers substantially larger
average block and chunk sizes. However, the subchunk in-
stance delivering the best dedup ratio still generates larger
average blocks and chunks in almost all cases compared even
to bimodal with 64 KB chunks.

netware mail wiki total

subchunk 64k / 8k 45.81 32.37 45.06 43.89
bimodal 64k / 8k 41.61 21.79 35.45 36.10
bimodal 32k / 4k 21.03 12.51 15.22 18.05
CDC 16k 15.15 16.54 14.78 15.20

Table 2: Average block size

netware mail wiki total

subchunk 64k / 8k 43.72 23.96 23.64 30.44
bimodal 64k / 8k 39.93 20.81 32.62 27.60
bimodal 32k / 4k 20.35 11.43 14.09 14.60
CDC 16k 14.62 15.62 14.50 15.07

Table 3: Average chunk size

The subchunk algorithm tries to emit big chunks by de-
fault and generates a block containing less data than a big
chunk only after the remainder of such chunk has been dedu-
plicated. Bimodal shares with the subchunk algorithm the
first advantage but not the second, as bimodal emits small
blocks on the border of change speculatively, in a hope that

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 5 10 15 20

R
e

a
l
D

E
R

IO operations per MB

wiki

CDC
bimodal

subchunk

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 5 10 15 20

R
e

a
l
D

E
R

IO operations per MB

netware

CDC
bimodal

subchunk

 5

 10

 15

 20

 0 5 10 15 20

R
e

a
l
D

E
R

IO operations per MB

mail

CDC
bimodal

subchunk

 1.5
 2

 2.5
 3

 3.5
 4

 4.5
 5

 5.5
 6

 0 5 10 15 20

R
e

a
l
D

E
R

IO operations per MB

total

CDC
bimodal

subchunk

Figure 6: Real DER and the average number of disk operations needed to read 1 MB of data from last backup

they will be used for deduplication later. However, such ex-
pected savings sometimes do not materialize. As a result,
subchunk algorithm generates a much larger average blocks,
compared to those generated by CDC and bimodal. Addi-
tionally, because of pointers to subchunks, there is a much
bigger difference between the average block size and the av-
erage chunk size in case of the subchunk algorithm, than for
the other two algorithms.

3.9 Configuration tuning
In this section, we show how real DER is affected by

changing a single parameter from the base configuration of
the subchunk algorithm (described in Section 3.4 for the
64 KB expected chunk size). To simplify the plots, we
present the results for the total dataset only. Usually, the
results for individual datasets do not differ significantly. Fig-
ure 7 presents the results.

The first parameter tuned is the anchor sequence length
– the number of consecutive chunks forming an anchor se-
quence. Surprisingly, the best results can be achieved for
anchors sequences created from a single chunk, as real DER
drops nearly linearly with the logarithm of the number of
chunks used. Shorter anchor sequences are more likely to
appear unchanged in subsequent backups, which is neces-
sary to download the appropriate mapping packs.

The next parameter is the expected distance between con-
secutive anchor sequences. With changing this value, also
the number of mapping packs pointed by each anchor has
been adjusted to always point mappings corresponding to
1 GB of real data. Setting more frequent anchor sequences
results in better deduplication, but, since each anchor se-
quence generates a read and write operations, too frequent
anchor sequences can reduce performance. We decided to set
the expected distance between consecutive anchor sequences
to 1024 chunks (on average 64 MB of real data for 64 KB
chunks).

We have also modified the number of mapping packs pointed

by each anchor. Generally, increasing this value results in
better deduplication. The sudden drop for the highest value
is caused by pruning of the deduplication context. It works
as a queue, and due to loading to many mappings, the map-
pings needed are evicted from the context before being used.
Increasing the deduplication context size would help in such
case. We have experimented with bigger deduplication con-
texts, but the results were not significantly better and we
kept 1 GB prefetch as a reasonable compromise.

Finally, we have experimented with other expected sub-
chunk sizes but our experiments have not shown any signif-
icant improvement.

Besides configuration tuning, we have also tested a few
modifications to the algorithm. The first one is coalescing
leftovers (blocks made of not duplicated subchunks). Instead
of emitting a single leftover block for each chunk, we can join
a few of them and emit a single block. Such modification
almost does not affect DER – leftovers are quite rare and
very unlikely to duplicate, but it allows us to maintain high
average block size.

The other one is limiting the number of subchunks in-
side a single chunk. With default chunker configuration, the
maximum number of subchunks is 24, while the expected
number of them is 8. If our system requires constant size
of metadata records, this can lead to waste of space – we
need to reserve about 3 B for each subchunk no matter if it
is present or not. However, we can coalesce all subchunks
above some limit. Our experiments show that limiting num-
ber of subchunks to 12 affects deduplication only slightly
(data-only DER drops from 6.01 to 5.95 on total dataset),
while limiting to 16 does not affect it at all (data-only DER
drops by less than 0.01).

4. RELATED WORK
Deduplication today is an active area of research with a

fast path transfer to commercial products.

 4.4

 4.8

 5.2

 1 2 4 8 16 32 64

R
e

a
l
D

E
R

Number of mapping packs pointed by each anchor

total

 4.4

 4.8

 5.2

 1 2 4 8 16 32 64

R
e

a
l
D

E
R

Anchor sequence length (chunks)

total

 4.4

 4.8

 5.2

 256 512 1024 2048 4096 8192 16384 32768

R
e

a
l
D

E
R

Expected distance between anchor sequences (chunks)

total

Figure 7: Real DER vs various parameters

One of the early systems with deduplication was Venti
[27], which used fixed size CAS blocks, so it was not able
to deduplicate shifted contents. CAS was also applied early
to detect duplicates of entire objects. EMC Centera [5] is
a CAS-based commercial product for archiving. When in-
troduced, Centera computed the content address on whole
files, so it was not able to perform sub-file deduplication.

A major improvement in deduplication was introduction
of CDC with variable sized blocks. Initially, it was used
in networked file systems to reduce bandwidth usage, most
notably in LBFS [21] and others [31, 26, 6].

MAD2 [32] is an example of a recent research system em-
ploying CDC. Foundation [29] uses CDC to deduplicate ver-
sions of entire hard disks in nightly snapshots. CZIP [24]
is a generic compression file format using CDC for general
use, e.g. in content distribution servers, file transfer or web
caching.

Besides exact matching of each chunk hash against a large
index, deduplication can be also achieved with an approx-
imate similarity detection. Pastiche [13] is a P2P backup
system using CDC and content based encryption. The dedu-
plication is done approximately across multiple nodes by
finding a set of backup buddies defined as nodes keeping
similar data. RedFS distributed filesystem [9] combines lo-
cal deduplication for groups of files with finding similar file
groups based on vectors of groups known to replica in order
to minimize data transferred between replicas.

Extreme binning [10] is an interesting technique for find-
ing duplicates across files using a one-per-file representa-
tive chunk defined as the chunk with the minimum hash.
These chunks are used to distribute files in bins, and dedu-
plication is limited to a given bin. Bin index is of limited
size like our deduplication context. However, our context
is stream-oriented as it is built with anchors encountered

in the stream, whereas bin content is file-oriented. More-
over, extreme binning assumes knowledge of file boundaries,
which the subchunk approach does not require.

Sparse index [18] also limits deduplication to a few similar
multi-megabyte segments, and the similarity is determined
with sampling. Unlike extreme binning, no knowledge of
file boundaries is assumed. The subchunk approach builds
deduplication context on-the-fly with anchors, instead of ac-
cumulating large segments of a stream being written for sam-
pling as done by sparse indexing. Moreover, sparse index-
ing does not deduplicate with multiple levels of chunking.
ProtecTier [7] is similar to sparse indexing in using large
segments of potentially similar data for deduplication.

Hybrid solutions combining CDC with other techniques
like delta compression [35] are also possible. Such systems
include REBL [16] and DeepStore [33]. Various dedupli-
cation techniques are evaluated in [20, 25, 19]. Compared
to CDC, delta encoding resulted in better dedup for fine-
grained changes.

Today, there is a multitude of commercial solutions deliv-
ering deduplication mostly for backup and archiving mar-
kets. Some of these systems like HYDRAstor [14], EMC
Avamar [4], Symantec Pure Disk [3], and EMC DataDo-
main [34] employ CDC and/or secure hashing to detect du-
plicates. Others like ExaGrid [1], IBM Protectier [23] and
SEPATON VTL [2] deliver deduplication with similarity
matching and delta-differential techniques.

The work described so far in this section concentrated
on chunking with one expected chunk size. Besides fin-
gerdiff [12] and bimodal chunking [15] already discussed in
Section 2.2, there is little research on deduplication with
multiple chunk sizes. One example is adaptive chunking [17]
which advocates switching between CDC and fixed size chunk-
ing to minimize necessary processing power on mobile de-
vices.

Our anchor blocks are in a way similar to per-file repre-
sentative chunks of extreme binning [10] and representative
blocks of the Spring network protocol [30] as all are used to
limit data against which deduplication is done. The idea of
coalescing content pointers has been suggested in a partially
content-shared filesystem [8].

Impact of chunk size on deduplication has been evaluated
in [22]. The optimal chunk size was found to be small – equal
to 1 KB, but the metadata overhead in this work is also small
and dominated by the hash size. A larger block size – 8 KB –
is used in DataDomain [34]. In our case, even larger blocks
are preferred because of bigger metadata overhead, which
is used to ensure multiple node failure resiliency of system
metadata.

5. CONCLUSIONS AND FUTUREWORK
In this work, we have proposed the subchunk deduplica-

tion algorithm which is driven by a dynamically prefetched
subchunk deduplication context of a limited size. This con-
text provides most of the mappings needed for an effective
deduplication on the subchunk level. Moreover, the context
input mappings can be stored as not-so-important metadata,
i.e. with low resiliency overhead. The new algorithm addi-
tionally reduces effective metadata overhead by using whole
chunks when possible and sharing most of metadata among
subchunks belonging to the same chunk. As a result, for
systems with significant metadata overhead, the subchunk
algorithm results in a superior real DER compared to other

approaches like CDC and bimodal while delivering signifi-
cantly bigger average block and chunk sizes. At the same
time, for standard backup traces, the new algorithm results
in less fragmentation. For other data streams the fragmen-
tation may be higher, but this is a cost of improved dedu-
plication.

For future work, we plan to evaluate the new algorithm
using more backup traces and to study in detail how to ad-
dress the fragmentation problem without reducing signifi-
cantly the deduplication ratio.

6. REFERENCES
[1] ExaGrid. http://www.exagrid.com.

[2] SEPATON Scalable Data Deduplication Solutions.
http://sepaton.com/solutions/data-deduplication.

[3] Symantec NetBackup PureDisk.
http://www.symantec.com/business/netbackup-
puredisk.

[4] EMC Avamar: Backup and recovery with global
deduplication, 2008. http://www.emc.com/avamar.

[5] EMC Centera: content addressed storage system,
January 2008. http://www.emc.com/centera.

[6] S. Annapureddy and M. J. Freedman. Shark: Scaling
file servers via cooperative caching. In In Proc NSDI,
2005.

[7] L. Aronovich, R. Asher, E. Bachmat, H. Bitner,
M. Hirsch, and S. T. Klein. The design of a similarity
based deduplication system. In SYSTOR ’09:
Proceedings of SYSTOR 2009: The Israeli
Experimental Systems Conference, pages 1–14, New
York, NY, USA, 2009. ACM.

[8] J. Barreto and P. Ferreira. Efficient file storage using
content-based indexing. In SOSP ’05: Proceedings of
the twentieth ACM symposium on Operating systems
principles, pages 1–9, New York, NY, USA, 2005.
ACM.

[9] J. Barreto and P. Ferreira. Efficient locally trackable
deduplication in replicated systems. In Middleware’09:
Proceedings of the ACM/IFIP/USENIX 10th
international conference on Middleware, pages
103–122, Berlin, Heidelberg, 2009. Springer-Verlag.

[10] D. Bhagwat, K. Eshghi, D. D. E. Long, and
M. Lillibridge. Extreme binning: Scalable, parallel
deduplication for chunk-based file backup. Sept. 2009.

[11] D. Bhagwat, K. Pollack, D. D. E. Long, T. Schwarz,
E. L. Miller, and J.-F. Paris. Providing high reliability
in a minimum redundancy archival storage system. In
MASCOTS ’06: Proceedings of the 14th IEEE
International Symposium on Modeling, Analysis, and
Simulation, pages 413–421, Washington, DC, USA,
2006. IEEE Computer Society.

[12] D. R. Bobbarjung, S. Jagannathan, and C. Dubnicki.
Improving duplicate elimination in storage systems.
Trans. Storage, 2(4):424–448, 2006.

[13] L. P. Cox, C. D. Murray, and B. D. Noble. Pastiche:
making backup cheap and easy. In OSDI ’02:
Proceedings of the 5th symposium on Operating
systems design and implementation, pages 285–298,
New York, NY, USA, 2002. ACM.

[14] C. Dubnicki, L. Gryz, L. Heldt, M. Kaczmarczyk,
W. Kilian, P. Strzelczak, J. Szczepkowski,
C. Ungureanu, and M. Welnicki. HYDRAstor: a

Scalable Secondary Storage. In FAST ’09: Proccedings
of the 7th conference on File and storage technologies,
pages 197–210, Berkeley, CA, USA, 2009. USENIX
Association.

[15] E. Kruus, C. Ungureanu, and C. Dubnicki. Bimodal
content defined chunking for backup streams. In
FAST, pages 239–252, 2010.

[16] P. Kulkarni, F. Douglis, J. LaVoie, and J. M. Tracey.
Redundancy elimination within large collections of
files. In ATEC ’04: Proceedings of the annual
conference on USENIX Annual Technical Conference,
pages 5–5, Berkeley, CA, USA, 2004. USENIX
Association.

[17] W. Lee and C. Park. An adaptive chunking method
for personal data backup and sharing, February 2010.
8th USENIX Conference on File and Storage
Technologies (FAST âĂŹ10) poster session.

[18] M. Lillibridge, K. Eshghi, D. Bhagwat, V. Deolalikar,
G. Trezis, and P. Camble. Sparse indexing: Large
scale, inline deduplication using sampling and locality.
In FAST, pages 111–123, 2009.

[19] N. Mandagere, P. Zhou, M. A. Smith, and
S. Uttamchandani. Demystifying data deduplication.
In Companion ’08: Proceedings of the
ACM/IFIP/USENIX Middleware ’08 Conference
Companion, pages 12–17, New York, NY, USA, 2008.
ACM.

[20] D. Meister and A. Brinkmann. Multi-level comparison
of data deduplication in a backup scenario. In
SYSTOR ’09: Proceedings of SYSTOR 2009: The
Israeli Experimental Systems Conference, pages 1–12,
New York, NY, USA, 2009. ACM.

[21] A. Muthitacharoen, B. Chen, and D. Mazires. A
low-bandwidth network file system. In In Proceedings
of the 18th ACM Symposium on Operating Systems
Principles (SOSP ’01, pages 174–187, New York, NY,
USA, 2001. ACM.

[22] P. Nath, B. Urgaonkar, and A. Sivasubramaniam.
Evaluating the usefulness of content addressable
storage for high-performance data intensive
applications. In HPDC ’08: Proceedings of the 17th
international symposium on High performance
distributed computing, pages 35–44, New York, NY,
USA, 2008. ACM.

[23] A. Osuna, R. Pflieger, L. Weinert, X. X. Yan, and
E. Zwemmer. IBM System Storage TS7650 and
TS7650G with ProtecTIER . IBM Redbooks, 2010.

[24] K. Park, S. Ihm, M. Bowman, and V. S. Pai.
Supporting practical content-addressable caching with
czip compression. In ATC’07: 2007 USENIX Annual
Technical Conference on Proceedings of the USENIX
Annual Technical Conference, pages 1–14, Berkeley,
CA, USA, 2007. USENIX Association.

[25] C. Policroniades and I. Pratt. Alternatives for
detecting redundancy in storage systems data. In
ATEC ’04: Proceedings of the annual conference on
USENIX Annual Technical Conference, pages 6–6,
Berkeley, CA, USA, 2004. USENIX Association.

[26] D. R. K. Ports, A. T. Clements, and E. D. Demaine.
Persifs: a versioned file system with an efficient
representation. In SOSP ’05: Proceedings of the
twentieth ACM symposium on Operating systems

principles, pages 1–2, New York, NY, USA, 2005.
ACM.

[27] S. Quinlan and S. Dorward. Venti: a new approach to
archival storage. In First USENIX conference on File
and Storage Technologies, pages 89–101, Monterey,
CA, 2002. USENIX Association.

[28] M. Rabin. Fingerprinting by random polynomials.
Tech. Rep. TR-15-81, 1981.

[29] S. Rhea, R. Cox, and A. Pesterev. Fast, inexpensive
content-addressed storage in foundation. In
Proceedings of the 2008 USENIX Annual Technical
Conference, pages 143–156, Berkeley, CA, USA, 2008.
USENIX Association.

[30] N. T. Spring and D. Wetherall. A
protocol-independent technique for eliminating
redundant network traffic. SIGCOMM Comput.
Commun. Rev., 30(4):87–95, 2000.

[31] N. Tolia, M. Kozuch, M. Satyanarayanan, B. Karp,
T. Bressoud, and A. Perrig. Opportunistic use of
content addressable storage for distributed file
systems. In IN PROCEEDINGS OF THE 2003
USENIX ANNUAL TECHNICAL CONFERENCE,
pages 127–140, 2003.

[32] J. Wei, H. Jiang, K. Zhou, and D. Feng. Mad2: A
scalable high-throughput exact deduplication
approach for network backup services. In Proceedings
of the 26th IEEE Symposium on Massive Storage
Systems and Technologies (MSST), May 2010.

[33] L. L. You, K. T. Pollack, and D. D. E. Long. Deep
store: An archival storage system architecture. In
ICDE ’05: Proceedings of the 21st International
Conference on Data Engineering, pages 804–8015,
Washington, DC, USA, 2005. IEEE Computer Society.

[34] B. Zhu, K. Li, and H. Patterson. Avoiding the disk
bottleneck in the Data Domain deduplication file
system. In FAST’08: Proceedings of the 6th USENIX
Conference on File and Storage Technologies, pages
1–14, Berkeley, CA, USA, 2008. USENIX Association.

[35] J. Ziv and A. Lempel. A universal algorithm for
sequential data compression. In IEEE Trans. Inform.
Theory, 1977.

