
Improving Duplicate Elimination in Storage
Systems

Deepak R. Bobbarjung and Suresh Jagannathan
Department of Computer Sciences, Purdue University
and
Cezary Dubnicki
NEC Laboratories America

Minimizing the amount of data that must be stored and managed is a key goal for any storage
architecture that purports to be scalable. One way to achieve this goal is to avoid maintaining
duplicate copies of the same data. Eliminating redundant data at the source by not writing data
which has already been stored, not only reduces storage overheads, but can also improve bandwidth
utilization. For these reasons, in the face of today’s exponentially growing data volumes, redundant
data elimination techniques have assumed critical significance in the design of modern storage
systems.

Intelligent object partitioning techniques identify data that are new when objects are updated,
and transfer only those chunks to a storage server. In this paper, we propose a new object
partitioning technique, called fingerdiff, that improves upon existing schemes in several important
respects. Most notably fingerdiff dynamically chooses a partitioning strategy for a data object
based on its similarities with previously stored objects in order to improve storage and bandwidth
utilization. We present a detailed evaluation of fingerdiff, and other existing object partitioning
schemes, using a set of real-world workloads. We show that for these workloads, the duplicate
elimination strategies employed by fingerdiff improve storage utilization on average by 25%, and
bandwidth utilization on average by 40% over comparable techniques.

Categories and Subject Descriptors: H.3.1 [Information Storage and Retrieval]: Content Analysis and Index-
ing; H.3.2 [Information Storage and Retrieval]: Information Storage

General Terms: Storage Management

Additional Key Words and Phrases: Content-based addressing, duplicate elimination, Rabin’s
fingerprints

1. INTRODUCTION
Traditional storage systems typically divide data objects such as files into fixed-sized
blocks and store these blocks on fixed locations in one or more disks. Metadata struc-
tures such as file inodes record the blocks on which a file is stored along with other rele-
vant file-specific information, and these inodes are themselves stored on fixed-sized disk
blocks. Whenever an object is modified by either inserts, deletes or in-place replacements,
the new blocks in the object are written to disk, and the metadata structure is updated with
the new block numbers. However due to the inability to efficiently identify those portions
of the object that are actually new in the latest update, a large part of existing data must get
necessarily rewritten to storage. Thus, the system incurs a cost in terms of storage space
and bandwidth whenever data is created or updated. This cost depends upon the storage
architecture, but is proportional to the amount of new data being created or updated. Our
solution relies on utilizing local computational and storage resources in order to minimize

ACM Transactions on Storage, Vol. V, No. N, July 2006, Pages 1–0??.

2 · Deepak Bobbarjung et al.

the cost of writing to scalable storage networks, by reducing the amount of new data that
is written with every update. This also reduces the amount of data that has to be stored and
maintained in the storage system, enabling greater scalability.

Recently, systems have been proposed that divide objects into variable-sized chunks∗
instead of fixed-sized blocks in order to increase the amount of duplicate data that is iden-
tified. Techniques that partition objects into variable-sized chunks enjoy greater flexibility
in identifying chunk boundaries. By doing so, they can manipulate chunk boundaries
around regions of object modifications so that changes in one region do not permanently
affect chunks in subsequent regions.

This paper describes fingerdiff, a device-level variable-sized object processing algorithm
designed to reduce the amount of data that is stored and maintained in storage systems.
Fingerdiff improves upon the duplicate elimination facilities provided by existing tech-
niques [Muthitacharoen et al. 2001; Cox et al. 2002] by dynamically repartitioning data
so as to aggregate unmodified data pieces into large chunks, thus minimizing the size of
new chunks written with each update. Like LBFS [Muthitacharoen et al. 2001], fingerdiff
works by maintaining client-side information in the form of hashes of small pieces of data
for objects that have been previously written. However dynamic partitioning allows fin-
gerdiff to expand the variability of chunk sizes enabling greater flexibility in chunk size
ranges. As a result fingerdiff can allow unmodified data regions to contain larger chunks,
while breaking up modified data regions into smaller chunks in order to minimize the
size of new chunks. Writing only data chunks that are new in the current update reduces
the total amount of data that has to be written to the system for every update. Similar
techniques have been proposed before in order to reduce bandwidth in a low bandwidth
network [Muthitacharoen et al. 2001] and to improve duplicate elimination in content ad-
dressable stores [Quinlan and Dorwards 2002; Kubiatowicz et al. 2000; Hong et al. 2004].
Fingerdiff not only improves upon the duplicate elimination capability of these techniques,
it also reduces management overheads involved in storing and maintaining large volumes
of data, thus improving storage system scalability.

1.1 Contributions
Our contributions in this paper are the following:

—We propose a new object partitioning algorithm, fingerdiff that improves upon the dupli-
cate elimination capability of existing techniques, while simultaneously reducing stor-
age management overheads.

—Using real-world workloads, we compare storage utilization and other storage manage-
ment overheads of fingerdiff with those of existing techniques. We evaluate the effect of
chunk sizes on the performance of these techniques.

—We show that fingerdiff improves upon the storage utilization of existing techniques by
25% on average and bandwidth utilization by 40% on average.

The remainder of this paper is organized as follows: Section 2 presents the architecture of
the system that we use to evaluate the effectiveness of data partitioning techniques. Sec-
tion 3 briefly discusses existing object partitioning schemes before presenting the fingerdiff
algorithm in section 3.2.2.2. Section 4 establishes the experimental framework that we

∗Henceforth, we will use the term “chunk” to refer to variable-sized data blocks and the term “block” to refer to
fixed sized data blocks.

ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 3

employ to compare the effectiveness and performance of the different techniques that we
discuss. Section 5 presents performance results and section 6 presents a detailed discussion
of these results. Section 7 contains related work and conclusions are given in section 8.

2. SYSTEM ARCHITECTURE
We assume a system model that consists of a storage engine that is essentially a chunk
store. This chunk store accepts requests to persistently store chunks of data from storage
clients. The store satisfies each such request by computing a hash key based on the content
of the chunk and storing the chunk in a location based on the value of its key. Next, the
chunk store returns the key to the client that wrote the chunk and the client in turn retains
the key as a capability or pointer to the chunk.

Such content-addressable storage systems[Cox et al. 2002; Hong et al. 2004; Kubia-
towicz et al. 2000; Muthitacharoen et al. 2001; Quinlan and Dorwards 2002] employ the
content based hash to uniformly name and locate data blocks. If the hash function used
is a robust one-way hash function like SHA-1[National Institute of Standards and Tech-
nology, FIPS 180-1 1995], the resulting key is unique with high probability. Therefore,
if hashes of two objects are equal, such systems can identify corresponding blocks as du-
plicates with high probability. Systems such as Venti[Quinlan and Dorwards 2002] and
Oceanstore[Kubiatowicz et al. 2000] are examples of storage architectures that rely on
content-based addressing to reduce storage consumption and management costs.

Applications running on various clients periodically update data objects such as files to
the store using an object server. The object server employs a driver that runs an object
partitioning technique such as fingerdiff. This driver divides objects into either fixed-sized
data blocks or variable-sized data chunks depending on the object partitioning algorithm.
Chunks or blocks identified by the driver as new in this update are then written to the
chunk store. For this purpose, the chunk store exports a simple chunk read/write API to
all application drivers. The driver asynchronously employs one of the chunking techniques
that we discuss to divide client data objects into chunks and then writes these chunks to the
store.

In case of fingerdiff, the application will communicate to the object server apriori the
exact specification of an object. The server then maintains in its fingerdiff driver, a separate
tree for every specified object. Examples of an object specification are a single file, all files
in one directory or any group of random files that the application believes will share sub-
stantial common data. All updates to a particular object will result in the driver comparing
hashes of the new update with hashes in the corresponding tree.

The system model is shown in Figure 1. Multiple clients update data through object
servers such as file or database servers. Each object server employs a fingerdiff driver that
maintains a lookup tree for every specified object. The driver writes new chunks of data to
a chunk store upon every update originating from data clients.

Note that fingerdiff is not restricted to this architecture. Indeed, fingerdiff is also appli-
cable in client-server environments, where both the client and the server maintain a series
of hashes for each file that they are processing. This model has been used to demonstrate
the efficiency of Rabin fingerprint based chunking technique in the low bandwidth network
file system [Muthitacharoen et al. 2001]. The chunk store in our system model can be a
centralized or distributed hash table that maps hashes to chunk locations. It can thus pro-
vide duplicate elimination across objects and clients, if multiple unrelated clients share the

ACM Transactions on Storage, Vol. V, No. N, July 2006.

4 · Deepak Bobbarjung et al.

same data. File server based architectures that maintain hashes on a per object basis will
fail to identify duplicates across objects.

Fingerdiff driver

Chunk Store

Fingerdiff driver

Database Server File Server

ClientsClients

Fig. 1. The storage system model

3. DATA PARTITIONING TECHNIQUES
We first present the design of the CDC algorithm, and discuss the different object partition-
ing techniques used in realistic content addressable stores before proposing the fingerdiff
technique.

3.1 Fixed-Sized Partitioning (FSP)
A fixed-sized partitioning(FSP) strategy employs a fixed block size that is chosen a priori,
independent of the content of the objects being stored, and objects are partitioned into
blocks of that size. Fixed-sized partitioning (FSP) is used in content addressable systems
such as Venti[Quinlan and Dorwards 2002] and Oceanstore[Kubiatowicz et al. 2000].

As one would expect, the effectiveness of this approach on duplicate elimination is
highly sensitive to the sequence of edits and modifications performed on consecutive ver-
sions of an object. For example an insertion of a single byte at the beginning of a file can
change the content of all blocks in the file resulting in no sharing with existing blocks.

3.2 Variable-Sized Partitioning(VSP)
Sensitivity to the nature of object modifications can be reduced by partitioning objects into
variable-sized chunks such that the changes made to consecutive versions are localized to
a few chunks around the region of change.

Since physical blocks on which data is stored persistently always have a fixed size, the
storage engine has to maintain a mapping between a variable sized data chunk, and the
one or more fixed-sized physical blocks on which it is stored. This can be done in two
ways. The first is by packing chunks contiguously in the storage media, and maintaining
the physical block number and offset in the physical media where each chunk begins.
The second is by assuming a fixed physical block size and storing each chunk in exactly
one physical block of that size after padding the remainder of the data block with zeros.
Both packing and padding strategies have obvious tradeoffs. Padding obviates the need
to maintain extra information for each chunk but suffers from internal fragmentation (the
space consumed in storing the padded zeros) that can on average be as much as half the
size of the fixed block size. In this paper, we assume a packing strategy on the storage
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 5

engine, and therefore while calculating storage utilization assume an extra 12 bytes that is
required to maintain a block number, offset and size information for each chunk (4 bytes
each).

3.2.1 Content-Defined Chunking (CDC). One variable-sized technique, which we re-
fer to as content-defined chunking (CDC) employs Rabin’s fingerprints to choose partition
points in the object. Using fingerprints allows CDC to “remember” the relative points at
which the object was partitioned in previous versions without maintaining any state infor-
mation. By picking the same relative points in the object to be chunk boundaries, CDC
localizes the new chunks created in every version to regions where changes have been
made, keeping all other chunks the same. As a result, CDC outperforms FSP techniques
in terms of storage space utilization on a content-based storage backend[Policroniades and
Pratt 2004]. This property of CDC has been exploited in the LBFS[Muthitacharoen et al.
2001] and Pastiche[Cox et al. 2002] content addressable systems.

3.2.1.1 CDC algorithm details:. The CDC algorithm (shown in figure 2) determines
partition points based on the contents of the object being partitioned. It assumes a pa-
rameter exp chunk size that determines the average chunk size of all the chunks gener-
ated. Chunk sizes, although variable, are expected to be within a margin of error of the
exp chunk size. CDC computes fingerprints (typically Rabin’s fingerprints) of all overlap-
ping substrings of a given size. In practice, the size of the substring typically varies from 32
bits to 96 bits. Depending on the value of exp chunk size, CDC compares a given number
of bits in each fingerprint with a magic value. Whenever a fingerprint is equal to the magic
value, the substring corresponding to that fingerprint is marked as a partition point, and
the region between two partition points constitutes a chunk. For example, if the expected
chunk size is 8KB, CDC compares the last 13 bits of each fingerprint with a fixed magic
value. Given the uniformity of the fingerprint generating function and since 213 is 8192,
the last 13 bits of the fingerprint will equal the magic value roughly every 8KB. As a result
all chunks will be of size approximately 8KB.

The storage engine provides packing to support the variable sized chunks generated by
CDC. For each chunk, the storage engine must maintain a mapping between the chunk’s
hash key value and a fixed sized physical block number where the chunk can be found,
an offset in that block where the chunk begins and the size of the chunk. This mapping
enables clients to read a chunk by simply issuing the chunk’s hash key.

3.2.1.2 CDC limitations:. Notice that the variability of chunk sizes in CDC is rather
limited. Most chunks are within a small margin of error of the exp chunk size value.
Since this value determines the granularity of duplicate elimination, the storage utiliza-
tion achieved by CDC is tied to this parameter. By decreasing the expected chunk size, we
can expect better duplicate elimination since new modifications will more likely be con-
tained in smaller sized chunks. However as You and Karamanolis have shown[You and
Karamanolis 2004], reducing the exp chunk size to fewer than 256 bytes can be counter
productive as the storage space associated with the additional metadata needed for main-
taining greater number of chunks nullifies the effect of storage savings obtained because
of a smaller average chunk size∗. Further, other than storage space overheads associated
with maintaining metadata information about each chunk (e.g., the hash key map), more

∗We observed a similar phenomenon in our results as well.(Figure 7)

ACM Transactions on Storage, Vol. V, No. N, July 2006.

6 · Deepak Bobbarjung et al.

1 Procedure CDC
2 INPUTS: File f, Integer exp chunk size
3 OUTPUT: List L of chunks
4 BEGIN
5 List L := empty;
6 chunkMask := calculateMask(exp chunk size);
7 foreach byte position X in f do
8 window := substring(f,X,substring size);
9 fp := fingerprint(window);
10 if (fp & chunkMask = magic value)
11 then
12 mark X;
13 endif
14 endfor
15 mark last position in f
16 firstpos := 0;
17 foreach byte position X that is marked do
18 chunk := substring(f,firstpos, X-firstpos);
19 firstpos := X;
20 L.add(chunk);
21 endfor
22 return L;
23 END

Fig. 2. Fingerprint based chunking algorithm

changes

B1 B2 B3 B32 B1 B2’ B3’

Version 2 ofVersion 1 of

(1K)(1K)

FF

B32’

FSP FSP

Fig. 3. An example of FSP being employed to encode two consecutive versions of a file.

number of chunks can lead to other system dependent management overheads as well.
For example, in a distributed storage environment where nodes exchange messages on a
per chunk basis, creating a greater number of chunks is likely to result in more network
communication during both reads and writes.

3.2.2 Fingerdiff. Fingerdiff is designed to overcome the tension between improved
duplicate elimination and increased overheads of smaller chunk sizes by improvising on the
concept of variable-sized chunks. It does this by allowing larger flexibility in the variability
of chunk sizes. Chunks no longer need to be within a margin of error of an expected chunk
size. The idea is to reduce chunk sizes in regions of change to be small enough to capture
these changes, while keeping chunk sizes large in regions unaffected by the changes made.

For this purpose, fingerdiff locally maintains information about subchunks - a unit of
data that is smaller than a chunk. Subchunks are not directly written to the storage engine.
Instead a collection of subchunks are coalesced together into chunks whenever possible
and then the resultant chunk is the unit that is stored. Fingerdiff assumes an expected
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 7

subchunk size parameter (exp sc size) instead of the expected chunk size parameter used
in CDC. Fingerdiff seeks to coalesce subchunks into larger chunks wherever possible. A
max scs parameter is used to determine the maximum number of subchunks that can be
coalesced to a larger chunk.

For example, if an object is being written for the first time, all its subchunks are new and
fingerdiff coalesces all subchunks into large chunks, as large as allowed by the max scs
parameter. If a few changes are made to the object and it is consequently written to the
store again, fingerdiff consults a local client-side lookup and separates out those subchunks
that have changed. Consecutive new subchunks are coalesced into a new chunk and written
to the store. Consecutive old subchunks are stored as a chunk or a part of a chunk that was
previously written.

To incorporate the notion of chunk-parts, fingerdiff expands the number of parameters
required to read data from the store. In addition to the hash key value used by CDC,
fingerdiff has to specify both the offset of the chunk-part within the chunk and the size of
the chunk-part to the storage backend. However, the packing requirements of the storage
backend needed to support variable chunk sizes of fingerdiff are the same as those for CDC.

3.2.2.1 Example:. To illustrate the difference between FSP, CDC and fingerdiff, we
consider an example where these three techniques are employed to chunk two consecutive
versions of a file F. The second version has been modified from the first version by inserting
a few bytes at a region near the beginning of the file.

First consider the two versions of F being stored using a FSP technique with a fixed
size of 1KB. Figure 3 illustrates the process for the first and second versions of the file.
For the first version, the FSP algorithm creates 32 new blocks B1 through B32 each of
which are exactly 1K bytes. The second version of the file includes some changes (which
are insertions) that are restricted in the region of block B2. As a result, when FSP is
run on this version, all blocks B2 through B32 have been changed into new blocks B2’
through B32’ respectively. Changing just a few bytes at the beginning of the file F results
in the generation of many new blocks. Figure 5 shows the improvement obtained when
FSP is substituted with CDC and fingerdiff. For this example we employ a CDC algorithm
parameterized by an exp chunk size of 1K bytes, and a fingerdiff algorithm that uses a
subchunk size of 1K bytes and a max scs parameter of 16. In Figure 5 (a) F is being
encoded using fingerdiff for the first time. When the CDC algorithm is called, assume
that it returns a series of 32 subchunks SC1 to SC32 with an average expected size of 1K
bytes. Assume each of these subchunks are marked new. The algorithm coalesces these
32 subchunks into two chunks C1 and C2 (because max scs is 16) each of which has an
expected size of 16K bytes. These two chunks are also marked as new, and supplied to
the storage system. In Figure 5 (b), F has been modified and the changes are introduced
in a region that corresponds to subchunk SC2 in the original version. When this file is
again partitioned with CDC, it returns a series of 32 chunks as before; however only the
subchunk SC2 is now replaced by SC2’ because of a modification in this region. This
marks an improvement of CDC over FSP; in FSP all the blocks following B2 would be
new.
Fingerdiff coalesces these subchunks into larger chunks depending on whether they are

old or new. It finds that SC1 is an old subchunk and records it as a chunk C1’ which is a
part of old chunk C1. We call such parts as chunk-parts, where each chunk-part contains

ACM Transactions on Storage, Vol. V, No. N, July 2006.

8 · Deepak Bobbarjung et al.

25 Procedure fingerdiff
26 Inputs: File f, Integer exp sc size , Integer max scs
27 Output: List CL of Chunks
28 BEGIN
29 ChunkList CL := empty;
30 SubChunkList SL := CDC(f,exp sc size);
31 SubChunk SC := SL.next();
32 Type currentChunkType := lookup(SC);
33 while SL != empty do
34 Chunk C := new Chunk();
35 if (currentChunkType = new)
36 then
37 C.type := new;
38 while (currentChunkType = new and
39 numSubchunks(C) < max scs) do
40 C.add(SC);
41 SC := SL.next();
42 currentChunkType := lookup(SC);
43 endwhile
44 else
45 C.type = old;
46 while (currentChunkType = old and
47 isContiguous(SC) do)
48 C.add(SC);
49 SC := SL.next();
50 currentChunkType := lookup(SC);
51 endwhile
52 endif
53 if (C.type = new)
54 then
55 foreach Subchunk SC in C do
56 size := sizeof(SC);
57 offset := getOffset(C,SC);
58 updateLookup(SC,C, offset,size);
59 endfor
60 endif
61 CL.add(C);
62 endwhile
63 return CL;
64 END

Fig. 4. The fingerdiff algorithm

one or more subchunks but not a whole chunk. It finds that SC2’ is a new subchunk which
was not seen before and therefore writes this as a new chunk C3. It finds that SC3 through
SC16 are old subchunks that belong to old chunk C1 and therefore coalesces these into
chunk C1’’ which is a partial chunk that is part of old chunk C1. Similarly, it coalesces
subchunks SC17 through SC32 as old chunk C2. Note that C1’ and C1’’ are parts of
an old chunk C1, and start at an offset in C1. This offset has to be maintained along with
the key and size of C1 in order to read these parts from the store. Since only C3 is new, it
is the only chunk written to the store. The remaining chunks are all either old chunks that
were previously written or parts of old chunks that were previously written to the store.
The output of fingerdiff after having written two versions of the file F to the store contains
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 9

changes

(new) (old) (old)(new) (new)

(a) (b)

(1K)

SC2’SC1 SC3 SC32

(old)
C1’ C3 C1’’ C2 C1 C2

SC32SC2 SC3SC1

Version 1 of Version 2 of

(1K)CDC

(1K,16)(1K,16)

CDC

fingerdiff fingerdiff

FF

Fig. 5. An example of fingerdiff being employed to encode two consecutive versions of a
file.

only 3 chunks, as opposed to CDC whose output contains 33 chunks. The storage savings
is due to the fact that the backend has to maintain metadata for only 3 chunks in fingerdiff
as opposed to 33 chunks in CDC. In our experiments, we show that this difference can be
crucial.

3.2.2.2 The fingerdiff algorithm:. The fingerdiff algorithm operates with two parame-
ters; an exp sc size parameter that is the expected subchunk size, which is similar to the
exp chunk size parameter used by CDC, and a max scs parameter that is the maximum
number of subchunks that can be contained in one chunk. A subchunk is therefore con-
tained in a chunk at a given offset. The chunk that contains a subchunk is referred to as the
subchunk’s superchunk.

The algorithm is illustrated in Figure 4. It takes as input a file f that has to be chunked
and the parameters, exp sc size and max scs and returns a list of chunks or chunk-parts.
Once the chunks are returned, those chunks that are marked new are written to the store.
All the chunks and chunk-parts are recorded in a metadata block using their 〈chunk-key,
size, offset〉 information. Depending on the design of the application, this metadata block
can also be written to the store and its key can be maintained as a pointer to this particular
version of the file.

The algorithm description hides the following details:

(1) The lookup procedure called on lines 8, 18 and 26 uses an auxiliary data structure
that records information about subchunks. If a match is found, the lookup procedure
returns the type as old; otherwise it returns the type as new.

(2) The isContiguous function called on line 23 ensures that the current subchunk being
processed is contiguous with the previous subchunk that was processed; i.e they have
the same superchunk and that the current subchunk appears immediately after the pre-
vious subchunk that was processed in that superchunk. In case some subchunk appears
in multiple superchunks, the algorithm maps it to the first superchunk it appeared in.
By checking for the order of subchunks in a superchunk, the isContiguous function
ensures that this mapping is never changed.

(3) The SL.next() function called on lines 7, 17 and 25 has the effect of removing the next
subchunk from the list and returning that subchunk.

(4) The numSubchunks(C) function called on line 15 returns the number of subchunks
ACM Transactions on Storage, Vol. V, No. N, July 2006.

10 · Deepak Bobbarjung et al.

currently present in chunk C.

The algorithm begins by invoking CDC (line 6) with an expected chunk size value equal
to the exp sc size to obtain a sequence of subchunks. In practice the list of subchunks can
be greater than what can be returned in one procedure call. The fingerdiff implementation
can handle this by calling CDC in batches, retrieving subchunks for a portion of the object
per batch.

The key intuition here is that the implementation can assume a lower exp sc size value
than the expected chunk size assumed in an implementation of CDC. This is because af-
ter calling CDC, fingerdiff will merge the resultant subchunks into larger chunks wherever
possible before writing them to the store. Lines 11 through 28 coalesce contiguous sub-
chunks into chunks that are either new or old depending on whether or not the local lookup
for them succeed. Line 14 ensures that the number of subchunks in a new chunk does
not exceed max scs. Lines 22 and 23 ensure that old subchunks are coalesced only if they
belong to the same superchunk and if they again appear in the same order as they did
in their superchunk. Lines 29 through 36 add information about the new subchunks to a
client-local data structure that is consulted by the lookup procedure.

Once fingerdiff returns, the encoder program only writes the new chunks to the store. The
old chunks are remembered as a 〈superchunk-key,offset,size〉 tuple. To read an old chunk,
the superchunk-key, offset and size information is provided to the backend to exactly read
the chunk or chunk-part required.

3.2.2.3 Implementation. In order to compare fingerdiff with other object partitioning
techniques, we implemented a chunk store that records the hash of each chunk, along with
its size and offset in a packing based storage system. We also implemented a file client that
reads files and directories and writes it to a file server. The file server implements an object
partitioning technique. This technique is either FSP, CDC or fingerdiff. In case of fingerdiff,
the file server maintains object specific tables, where each table contains hashes of all
subchunks seen in all previous versions of a given object. This table is pulled into memory,
whenever a corresponding file is being updated. The subchunks are computed using a CDC
implementation that identifies chunk boundaries by computing Rabin’s fingerprints on a
sliding window of 32 bit substrings of the file. For each partitioned object (e.g. file), there
is a tree containing information about all the subchunks of all the versions of that object
that have been written so far. The information about each subchunk includes:

—The hash of the subchunk.
—The hash of the subchunk’s superchunk.
—The offset of the subchunk in its superchunk.
—The size of the subchunk.

The tree itself is indexed using the hash of the subchunk. All hashes are computed using
an implementation of the standard SHA-1 algorithm. The tree is stored persistently on
disk. Another tree is used to maintain a mapping between the object being chunked and its
corresponding lookup tree.

A lookup tree is read from disk whenever its corresponding object is being chunked.
Maintaining a separate lookup tree for each object improves the time to lookup informa-
tion about subchunks of each object, but it does eliminate the possibility of cross-object
duplicate elimination. However, note that if separate clients write the same object through
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 11

different file servers (and different fingerdiff drivers) to the storage repository, content-
addressing at the storage engine will still ensure only one set of chunks for the identical
objects are stored. Only in scenarios where unrelated clients modify the same object in
different ways is it possible for the storage system to not identify duplicates in an efficient
manner.

3.2.2.4 Lookup management in fingerdiff. We use the hash of a subchunk as a key
into the lookup structure in order to obtain information about that subchunk. The lookup
operation introduces overheads in fingerdiff both in terms of the space required for the
lookup and the time needed to read and insert subchunk information. As we reduce the
expected subchunk size of fingerdiff more subchunks are created, increasing the lookup
size.

Full PC node

Full node Sparse node

Sparse PC node

Xi =0Xi =1 Xi =255 Xi =V1Xi =V2 Xi =Vk

Si,i+j =”...”Si,i+j =”...”

Xi+j =0Xi+j =1 Xi+j =255 Xi+j =V1 Xi+j =V2 Xi+j =Vk

Fig. 6. Different ith level nodes that make up the fingerdiff tree. In case of ith level full and sparse nodes, the ith

byte Xi of the key is used to decide the node to lookup at the i + 1th level. In case of PC nodes the i + jth byte
Xi+j is used to make this decision, provided the substring Xi,i+j of the key is same as the substring Si,i+j

stored in the PC node.

We originally implemented the data structures for fingerdiff lookup using a classical in-
memory hash table that given a hash key returns subchunk information. However we found
that the time and space overheads of this approach were considerable due to the random
distribution of SHA-1 hash-key values and the rapid growth in the amount of information
that had to be stored. Essentially, related or similar subchunks can have completely differ-
ent hash-key values due to the uniform hashing of the SHA-1 function. Consequently, two
or more hash keys for unrelated subchunks may contain common substrings. The amount
of commonality and the range in the 20 byte key at which this commonality occurs depends
solely on the contents of data being written and changes dynamically with object updates.
We would like to dynamically adjust to this commonality in key space in order to avoid
storing repeated substrings in the lookup structure without increasing the time to perform
the search.

We designed an in-memory data structure for fingerdiff lookup by taking this observation
into account. This data structure is a variant of a digital search tree that given the hash of a
subchunk returns subchunk information. The tree contains different types of nodes at each
level. Based on the ith byte of the key and the node at the ith level, the algorithm decides
which node to consult at the i + 1th level. This node will be a child of the ith node. For

ACM Transactions on Storage, Vol. V, No. N, July 2006.

12 · Deepak Bobbarjung et al.

20 byte SHA-1 hashes, the tree has 20 levels. The leaf nodes in this tree contain subchunk
information.

Nodes can be of two types – full nodes and sparse nodes. Full nodes are nodes that
contain children for 128 or more possible values of the byte at a particular level. Since
a byte has a possible maximum of 256 values, some children of a full node may be null
values, indicating that the corresponding subchunks do not exist. Sparse nodes are nodes
that contain k < 128 children. Each child corresponds to a particular byte value that has
been seen at this node and at this level. The children are sorted based on the values V1, ...Vk

of the byte that have been seen at this level. A new byte value at this level not belonging to
the set V1, ...Vk indicates that the corresponding subchunk is new.

In cases where a subtree is linear, i.e. where nodes in several consecutive levels of the
tree have only one child, the entire substring corresponding to that path is stored at the root
of the subtree. Such a root node is called a path compressed or PC node. PC nodes are also
either full nodes or sparse nodes depending on the number of bytes seen at the i+ jth level
of a ith level PC node with a substring of length j.

No. of Version No. or Size of tarred No. of files
Versions Snapshot date. version (MB) in version

First Last First Last First Last
Sources
gcc 20 2.95.0 3.4.0 56 191 2771 21817
gdb 10 5.0 6.3 56 88 3771 5255
emacs 8 20.1 21.3 46 73 1967 2553
linux 10 2.6.0 2.6.9 179 196 15007 16448
Binaries
gaim 365 01/01/04 12/31/04 46 47 140 143

Databases
freedb 11 02/01/2003 01/01/2004 177 295 102627 155153

Table I. Characteristics of the first and last version of each benchmark

4. EXPERIMENTAL FRAMEWORK
An important goal of this work is to measure the effectiveness of chunking techniques in-
cluding fingerdiff in eliminating duplicates in a content addressable storage system with
specific emphasis on applications that write consecutive versions of the same object to
the storage system. But apart from storage space utilization, we also measured the band-
width utilization, the number of chunks generated and other chunk related management
overheads for different chunking techniques.

4.1 Benchmarks
We used three classes of work loads to compare fingerdiffwithCDC. The first one, Sources,
contains a set of consecutive versions of source code of real software systems. This in-
cludes versions of gnu gcc, gnu gdb, gnu emacs and the linux kernel. The second class,
Databases contains periodic snapshots of information about different music categories
from the Freedb database obtained from www.freedb.org. Freedb is a database of compact
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 13

 100

 1000

 10000

32641282565121k2k4k8k

S
to

ra
g
e

si
ze

(i
n
 M

B
)

 Expected chunk size

emacs

gdb

linux

Fig. 7. Backend storage space consumed after writing all versions of a benchmark for different expected chunk
sizes of CDC. The X-axis is a log 10 scale

disc track listings that holds information for over one million CDs. Freedb allows an index-
ing structure, whereby to lookup CD information, clients can calculate a nearly unique disc
ID and then query the database. For our experiments, we obtained 11 monthly snapshots
of freedb during the year 2003 for the jazz, classical and rock categories. These snap-
shots were created by processing all the updates that were made each month to the freedb
site. The third class, Binaries contains executables and object files obtained by compiling
daily snapshots of the gaim internet chat client being developed at http://sourceforge.net
taken from the cvs tree for the year 2004. While the Sources and Databases classes of
benchmarks contains versions at well defined release or update points, the gaim bench-
mark contains all data that existed at the end of the work day for all days of the year
2004. As a result, the gaim benchmark has a total of exactly 365 snapshots. Therefore
the gaim benchmark represents a different object modification characteristic from the rest:
each modification in gaim is incremental in nature while modifications are more frequent,
whereas each modification in the other benchmarks contain all the changes of a new re-
lease, but modifications are few and far between. Table I enumerates the characteristics of
the first and last version of each of our benchmarks.

5. RESULTS
Different instantiations of FSP,CDC and fingerdiff are possible depending on the fixed
block size of FSP, the exp chunk size of CDC and the exp sc size of fingerdiff as discussed
so far. We use the following terminology to define CDC and fingerdiff instantiations:

—A cdc-x instantiation is a content defined chunking strategy with an exp chunk size of x
bytes;

—A fd-x instantiation is a fingerdiff instantiation with a exp sc size of x bytes and max scs
of 32 KB.

ACM Transactions on Storage, Vol. V, No. N, July 2006.

14 · Deepak Bobbarjung et al.

Sources Databases Binaries Total
benchmark gcc gdb emacs linux freedb gaim
cdc-2k 1414 501 327 1204 396 225 4067
cdc-256 866 363 258 708 348 245 2788
cdc-128 828 344 259 629 369 301 2731
cdc-64 859 358 281 692 442 447 3079
cdc-32 979 500 457 985 644 527 4090
fd-2k 1400 498 324 1195 370 213 3999
fd-256 799 336 239 644 396 196 2611
fd-128 680 293 220 520 317 208 2238
fd-64 579 255 199 469 291 244 2038
fd-32 498 255 221 543 290 246 2052

% saving 40 26 25 23 17 13 25

Table II. Comparison of the total storage space consumed (in MB) by the ten chunking
technique instantiations after writing each benchmark on a content addressable chunk store.
The last column gives the % savings of the best fingerdiff technique over the best CDC
technique for each benchmark.

A storage driver partitions each version or snapshot of the benchmark using one of the
chunking instantiations and writes each chunk asynchronously to a content-based storage
backend. Asynchronous chunking ensures that applications do not have to wait for the
chunking operation to be completed upon each write.

We chose to exclude FSP based instantiations from our experiments as it has been well
documented[Policroniades and Pratt 2004] that CDC instantiations exploit commonality
of data better than FSP instantiations.

We calculate storage utilization of a chunking technique instantiation for a particular
benchmark by storing consecutive versions of the benchmark after chunking it into variable
sized chunks using that instantiation.

The total storage space is calculated by adding the space consumed by the benchmark
data on the chunk store backend (backend storage utilization) and the lookup space re-
quired for a given benchmark on the object server (local storage utilization). The backend
storage space consists of data and metadata chunks for the benchmarks along with the cost
of storing a pointer for each chunk. We calculate this cost to be 32 bytes(20 bytes for
SHA-1 pointers plus 12 bytes to maintain variable-sized blocks through packing). The lo-
cal lookup space is used on the driver to support fingerdiff and CDC chunking. This lookup
is a tree that maps hashes of subchunks of an object to information about that subchunk.
This tree resides in disk persistently, but is pulled into memory when an object is being
updated and has to be partitioned. As can be expected, this tree grows as more versions
of the object are written to the store. We measure the size of the tree for all our fingerdiff
instantiations. The lookup space is measured as the total space occupied by the lookup tree
for each benchmark in the local disk.

Note that if a replication strategy is used for improved availability, the backend storage
utilization will proportionately increase with the number of replicas but the local storage
utilization will remain constant for any number of replicas.
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 15

We observed that the backend storage utilization of CDC peaked at an expected chunk
size of either 128 bytes or 256 bytes for all benchmarks. (Figure 7 illustrates this phe-
nomenon for three benchmarks in Sources.) This is because, as we decrease the expected
chunk size of CDC in order to improve chunking granularity, the number of chunks gen-
erated increases, which in turn increases the cost of maintaining a pointer per chunk (32
bytes). As a result, the increased duplicate elimination due to improved granularity is offset
by the cost of storing an increased number of chunks.

Note that the functionality of fingerdiff necessitates a local lookup; On the other hand
CDC can function without one. The use of a local lookup in a CDC technique will impose
a local lookup space overhead, whereas a CDC technique without one will incur extra
bandwidth overhead as every chunkwill have to be sent to the chunk store over the network.

For our experiments we assume that CDC techniques also maintain a local lookup to
avoid incurring a heavy bandwidth overhead of transferring every chunk to the server. We
compare the total storage consumed (backend storage utilization + local lookup utilization)
of five fingerdiff instantiations and fiveCDC instantiations. We limit theCDC instantiations
for which we show results to cdc-2k, cdc-256, cdc-128, cdc-64 and cdc-32. We compare
these with five fingerdiff instantiations namely fd-2k, fd-256, fd-128, fd-64 and fd-32. Note
that many more instantiations are possible, but we limit our presentation in order to reduce
the clutter in our tables and graphs, while ensuring that the broad trends involved with
changing chunk sizes are clear.

5.1 Total storage space consumed

Sources Databases Binaries
benchmark gcc gdb emacs linux freedb gaim
cdc-2k 412 112 84 289 221 193
cdc-256 1880 677 496 1472 1046 1257
cdc-128 3324 1280 971 2467 1799 2310
cdc-64 5799 2325 1864 4579 3616 4589
cdc-32 10204 5231 4804 10202 8226 5760
fd-2k 51 13 10 57 31 22
fd-256 360 76 60 244 419 69
fd-128 642 174 121 515 706 119
fd-64 732 240 203 562 881 231
fd-32 1177 551 398 1059 1309 234

Table III. Comparison of the number of chunks (in thousands) generated by the seven
chunking technique instantiations while writing the different benchmarks to a content ad-
dressable store.

The storage space consumed by each chunking technique reflects the amount of storage
space saved by leveraging duplicate elimination on the store. The technique which best
utilizes duplicate elimination can be expected to consume the least storage space. Table
2 compares the total (backend+local) storage utilization achieved on account of duplicate
elimination after individually storing all our benchmarks for all ten chunking instantiations.

ACM Transactions on Storage, Vol. V, No. N, July 2006.

16 · Deepak Bobbarjung et al.

2
k

1
k

25664164

Chunk overhead

1
0
0
0

5
0
0

25664164

Chunk overhead

1
0
0
0

5
0
0

25664164

Chunk overhead

(gcc) (gdb) (emacs)

2
k

1
k

25664164

Chunk overhead

2
k

1
k

25664164

Chunk overhead

2
k

1
k

25664164

Chunk overhead

(linux) (gaim) (freedb)

 cdc-256
 cdc-128

 cdc-64
 fd-256

 fd-128
 fd-32

Fig. 8. Comparison of the total network traffic (in MB) consumed by six of the ten chunk-
ing technique instantiations after writing each benchmark on a content addressable chunk
store. The X-axis of each graph is a log plot which gives the chunk overhead; i.e the over-
head in bytes associated with transferring one chunk of data from the driver to the chunk
store. The network traffic measured is between the object server and the chunk store. The
Y-axis gives the total network traffic generated in MB after writing each benchmark to the
chunk store.

For all benchmarks (except gaim) either fd-32 of fd-64 consumes the least and cdc-32
the most storage. In case of gaim fd-256 consumes the least storage. Among the CDC
instantiations, either cdc-128 or cdc-256 gives the best storage utilization. Decreasing the
chunk size of CDC to 64 or 32 increases total storage consumption for all benchmarks.

However for most benchmarks, reducing the expected subchunk size of fingerdiff to 64
or 32 bytes helps us to increase the granularity of duplicate elimination without incurring
the storage space overheads of too many small chunks. The last column (% savings) in
table 2 gives the savings achieved by the best fingerdiff (in most cases fd-32 or fd-64) in-
stantiation over the best CDC instantiation (either cdc-128 or cdc-256). In spite of the
large number of hashes for subchunks maintained in fingerdiff drivers, fingerdiff improves
the storage utilization of the best CDC . For example, fd-32 improves backend storage uti-
lization of the best CDC by a significant percentage for all benchmarks that we measured.
This improvement varied from 13% for gaim to up to 40% for gcc. The last row in table 2
gives the total storage consumed after writing all the benchmarks to the chunk store. Here,
we observed that fd-64 gives the best storage utilization. It improves upon the storage
utilization of the best CDC technique (cdc-128) by 25%.
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 17

5.2 Number of chunks
From the storage system point of view we would like to have as few chunks as possible to
reduce the management cost associated with each chunk. These overheads include at least
one 20 byte pointer per chunk. Depending on the storage architecture, the overheads could
also involve one disk request per chunk on reads, and one network request per chunk from
either a client to the server or a peer to another on reads and writes. Table 3 shows the
number of chunks(in thousands) that were generated by each chunking technique after all
our benchmarks were written to a content addressable store.
Cdc-32 and fd-2k generate the maximum and minimum number of chunks respectively

for both the emacs and gaim benchmarks.
As expected, the trend we observe here is that as we reduce the exp chunk size for CDC

and the exp sc size for fingerdiff, the number of chunks generated increases.
These results reflect the inherent tension between storage consumption and chunk over-

head, i.e trying to improve granularity of chunking inevitably increases the number of
chunks generated. Fingerdiff however resists this trend more strongly than CDC. As a re-
sult we have fingerdiff instantiations that strike a better balance between the two attributes.
For example, for all benchmarks fd-256 gives us better storage utilization than any CDC
instantiation, while generating fewer chunks than cdc-256.

5.3 Total network bandwidth consumed
Once the object server identifies the chunks that are new in each update, it sends each new
chunk to the chunk store along with necessary metadata for each chunk. In our model, this
metadata must include the size of the chunk (necessary to support variable sized chunks),
imposing an overhead of 4 bytes for every chunk that is sent. Based on this we calculated
the average bandwidth savings of the best fingerdiff technique over the best cdc technique
for all benchmarks to be 40%.

However other models might require extra metadata. For example, a model akin to the
the low bandwidth file system[Muthitacharoen et al. 2001] where the server also main-
tains object information might require the client to send the file descriptor along with each
chunk. Peer to peer architectures might require the client to check the existence of each
hash with the chunk store[Cox et al. 2002]. In general, chunking techniques that gener-
ate more chunks will send more traffic over the network, the exact amount of which will
depend on the network protocol and the system model. Figure 7 illustrates the amount
of network bandwidth consumed by different instantiations for all benchmarks for a vary-
ing amount of metadata traffic overhead per chunk. For each benchmark the per-chunk
overhead is varied from 4 bytes to 256 bytes. Observe that for all benchmarks, a chunk
overhead as low as 4 bytes results in substantial bandwidth savings for the best fingerdiff in-
stantiations over all the CDC instantiations. Note that to preserve clarity of our graphs, we
plot only 3 instantiations from fingerdiff and 3 from CDC. However note that we do plot
cdc-128 and cdc-256 which formed the most efficient CDC instantiations for all bench-
marks. Also observe that the instantiations that generate more number of chunks (i.e the
CDC instantiations) consume more bandwidth as the per-chunk overhead is increased from
4 to 256. We conclude that fingerdiff substantially improves upon the bandwidth utilization
of CDC.

ACM Transactions on Storage, Vol. V, No. N, July 2006.

18 · Deepak Bobbarjung et al.

5.4 Erasure coded stores
We have shown that when increasing the variability of chunk sizes, fingerdiff generates
fewer number of chunks than CDC for a given level of duplicate elimination. It therefore
reduces management overheads associated with storing and maintaining every chunk in the
system.

Systems such as Oceanstore [Kubiatowicz et al. 2000] and Intermemory[Goldberg and
Yianilos 1998] propose the use of erasure codes[Berlekamp 1968; Blomer et al. 1995;
Weatherspoon and Kubiatowicz 2002] instead of replication[Lv et al. 2002] for guaran-
teeing data availability. In such systems, a data block is divided into m equally-sized
fragments and these m fragments are encoded into n fragments (where n > m). These
n fragments can be dispersed across n or less nodes in a potentially distributed system.
Unlike replication, erasure codes allows for increase in availability without a proportional
blowup in storage space of data. Availability can be improved by increasing both m and
n, but as long as the ratio m/n is kept constant, the space consumption of data remains the
same. However for each fragment that is stored, there is at least one reference to that frag-
ment. In a content based storage where we use SHA-1 pointers for reference, we would
need at least 20 bytes per each new fragment.

Since erasure coded stores maintain metadata per each fragment, the overall size of
metadata is much greater than in regular storage systems. Further this size increases not
just with the size of the data, but also with the number of chunks used to represent that
data. Since fingerdiff generates fewer chunks than CDC while partitioning the same data,
we expect fingerdiff techniques to incur smaller overheads in erasure coded stores. Figure 8
measures the growth in storage space for six chunking technique instantiations (three CDC
and three fingerdiff) and for all benchmarks, as we increase the number of encoded frag-
ments for each block from 8 to 64. For each of the graphs, the Y-axis is a log 10 plot that
measures the total storage space in MB for a given number of encoded fragments. Observe
that for all benchmarks, the instantiation that results in the most number of chunks(cdc-
64) experiences the fastest rate of growth in storage space as we increase the number of
fragments per block. We conclude that as the number of encoded fragments is increased,
eventually the instantiation which generates more chunks will consume more storage than
techniques which generate fewer chunks. In general, fingerdiff provides a given level of
duplicate elimination by generating fewer chunks than CDC. This makes it more efficient
in erasure coded stores.

6. DISCUSSION
It has been well-documented that CDC provides better duplicate elimination than FSP
techniques[Policroniades and Pratt 2004]. However, as we have shown in Figure 7, the
backend storage utilization of CDC peaks for a particular chunk size, making it impossible
to improve storage utilization over this peak value through CDC alone. We have shown that
fingerdiff, by coalescing smaller chunks into larger ones wherever possible, breaks this bar-
rier and allows far greater storage utilization than the best CDC instantiation. We have also
shown the conflicting nature of the two characteristics associated with storage systems–
the total storage space and the number of chunks generated. In order to further highlight
this conflict, and show the role of fingerdiff in balancing the two, we plot one against the
other. Figure 10 plots backend storage consumption as a function of the number of chunks
generated by three CDC and three fingerdiff instantiations for all our benchmarks. Each
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 19

1
0
0
0
0

1
0
0
0

6432168

Fragments

1
0
0
0
0

1
0
0
0

6432168

Fragments

1
0
0
0

6432168

Fragments

gcc gdb emacs

1
0
0
0
0

1
0
0
0

6432168

Fragments

1
0
0
0
0

1
0
0
0

6432168

Fragments

1
0
0
0
0

1
0
0
0

6432168

Fragments

linux gaim freedb

 cdc-256
 cdc-128

 cdc-64
 fd-256

 fd-128
 fd-32

Fig. 9. Storage space consumed after storing all versions of all benchmarks on an erasure
coded store as the number of fragments each block is encoded into (i.e n value) is increased
from 8 to 64(m = n/2). The X-axis is a log 2 plot that indicates the number of fragments
that each block is encoded into, and the Y-axis is a log 10 plot that shows the total storage
consumed by both data and metadata (pointer references) in MB.

point in the lines of figure 10 represents a version release in the corresponding benchmark.
In case of gaim and freedb, each point represents a end of month snapshot. In this graph
a line going up (parallel to Y-axis) indicates storage space growth, whereas a line going
wide (parallel to X-axis) indicates growth in the number of chunks. A shorter line implies
that the corresponding instantiation controlled the rate of growth of both storage space and
number of chunks better than one with a longer line. The shortest line for all the graphs
are those of fingerdiff instantiations; fd-256 for gaim and emacs, and fd-128 for the rest,
emphasizing our point that fingerdiff finds a better balance between the two conflicting
attributes.

The improved storage efficiency of fingerdiff comes with a cost. A local lookup that
maintains information about each of the subchunks that have been written so far must
be maintained. Note, however, that the lookup need not be maintained with the same
availability and persistence guarantees as data on the storage end. Losing information
stored in the lookup to a disk failure will not result in catastrophic loss of data; at worst,
it will result in lower storage utilization on the backend because of sub-optimal duplicate
elimination.

In our implementation, a separate lookup is maintained for every object that is being
updated. While this ensures that no single lookup becomes too large, it does not allow for
the fingerdiff driver to identify duplicates across two different objects. However chunks

ACM Transactions on Storage, Vol. V, No. N, July 2006.

20 · Deepak Bobbarjung et al.

 0

 200

 400

 600

 800

 1000

 1200

 1400

3M2M1M

S
to

ra
g

e
si

ze
(i

n
 M

B
)

 No. of chunks generated

 0

 100

 200

 300

 400

 500

1.25M1M750K500K250K

S
to

ra
g

e
si

ze
(i

n
 M

B
)

 No. of chunks generated

 0

 100

 200

 300

 400

 500

1M750K500K250K

S
to

ra
g

e
si

ze
(i

n
 M

B
)

 No. of chunks generated

gcc gdb emacs

 0

 200

 400

 600

 800

 1000

 1200

2.5M2M1.5M1M500K

S
to

ra
g

e
si

ze
(i

n
 M

B
)

 No. of chunks generated

 0

 50

 100

 150

 200

 250

 300

2M1.5M1M500K

S
to

ra
g

e
si

ze
(i

n
 M

B
)

 No. of chunks generated

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

2M1M

S
to

ra
g

e
si

ze
(i

n
 M

B
)

 No. of chunks generated

linux gaim freedb

 cdc-2k
 cdc-256

 cdc-128
 fd-256

 fd-128
 fd-32

Fig. 10. The storage utilization as a function of the number of chunks generated while
writing all the benchmarks to a content addressable chunk store.

belonging to identical objects that enter the system via different drivers will still be likely
to get eliminated in the chunk store because of its content based nature. Only in rare
cases where different applications modify identical objects in separate ways and then send
the respective updates to the store via different drivers will it be possible that the storage
system will fail to identify duplicate data in an efficient way. Also note that in our storage
model, having one large lookup for all objects will allow for such cross-object duplicate
suppression and also eliminate the need for the chunking instantiation to be aware of which
object is being updated. But such a lookup structure will grow quickly and will have to be
efficiently managed both in memory and in disk. We are currently working to ensure that
such a structure can work in bounded memory and that different parts of the lookup can
be paged in and out of disk efficiently. This in itself is an interesting problem because the
lookup is based on hashes of subchunks, and since uniform hashing ensures that related
subchunks have totally unrelated hashes, information for related subchunks are dispersed
throughout the lookup structure making it difficult to page them collectively.

The SHA-1[National Institute of Standards and Technology, FIPS 180-1 1995] hashing
function that we use ensures that the probability of collision is much lower than that of
a mechanical disk failure in storage systems[Quinlan and Dorwards 2002]. However it
is conceivable that SHA-1 can be broken in the future, making it easier to provide two
independent data chunks with different content that have the same hash. The alternative
for content-based storage systems will be to employ hashing algorithms such as SHA-224,
SHA-256 and SHA-512 that generate larger hash keys than SHA-1 and further reduce the
probability of finding collisions. Larger key values will have larger metadata overheads per
chunk. Since fingerdiff provides a given level of storage utilization while generating fewer
ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 21

chunks than other chunking techniques, we believe that fingerdiff based systems will pay
a smaller penalty in terms of storage utilization while transitioning from SHA-1 to more
complex hash functions.

7. RELATED WORK
Fingerprints have been proposed to identify similar documents[Broder 1997; 2000; Man-
ber 1994] in a large set of unrelated documents. Similarity detection has various applica-
tions in domains such as copy-detection[Shivakumar and Garcı́a-Molina 1995] and web
clustering[Broder et al. 1997]. Among fingerprinting techniques, a specific type, known as
Rabin’s fingerprints[Rabin 1981] has been used extensively for implementing fingerprint-
based software systems. The chief advantage of Rabin fingerprints is that they are very
easy to compute over a sliding window of substrings in a document. Thus the cost of com-
puting fingerprints for an entire document containing l substrings is much less than l times
the cost of computing the fingerprint of one substring.

Duplicate elimination (sometimes also referred to as duplicate suppression elsewhere),
differs from this area of research as it aims to eliminate redundancy due to identical (and
not similar) objects or blocks by comparing hashes of the object’s or block’s content[Hong
et al. 2004; Kubiatowicz et al. 2000; Quinlan and Dorwards 2002; W. J. Bolosky and
Douceur]. In these schemes, objects are hashed in their entirety or divided into fixed sized
blocks (FSC) and each block is then hashed. Fingerprints can be used to identify not only
documents, but also offsets inside documents that determine where blocks can be divided.
Once blocks have been identified, they can be hashed using robust hashing algorithms
such as SHA-1[National Institute of Standards and Technology, FIPS 180-1 1995]; this
hash can then be used for duplicate elimination. Such content defined chunking(CDC)
schemes are used in the LBFS file system[Muthitacharoen et al. 2001] to reduce bandwidth
requirements between storage clients and servers by reducing the amount of data that has
to travel across the network. LBFS maintains state information on the client side and uses
a technique similar to cdc-8k in order to identify and send only those chunks that are new
in the modified version. There is a direct correlation between the amount of bandwidth
that can be saved in such systems and the amount of storage space that can be gained due
to duplicate elimination. Since we have shown that fingerdiff significantly improves the
storage utilization over CDC, we believe that using fingerdiff over CDC in systems such as
LBFS can further reduce bandwidth requirements of the network.
CDC is also used in pastiche[Cox et al. 2002], in order to identify backup buddies in

a peer-to-peer system. Previous work has also compared CDC with fixed sized chunk-
ing schemes[Policroniades and Pratt 2004]. Not surprisingly, it was concluded that CDC
outperforms FSC with respect to storage utilization.

Delta encoding[Ajtai et al. 2000; Hunt et al. 1998; Tichy 1984] is a technique that at-
tempts to encode the difference between two given strings (or objects) in the most ef-
ficient way possible. This technique is used extensively in versioning systems such as
CVS[Cederqvist 1992], SCCS[Rochkind 1975] and RCS[Tichy 1985]. By storing only the
changes made to consecutive versions, delta encoding can reduce storage overheads. Delta
encoding has also been extended to pairs of objects that do not share an explicit versioning
relationship[Douglis and Iyengar 2003; Ouyang et al.]. In these systems similarity detec-
tion on a vast collection of unrelated documents is applied in order to identify candidate
pairs for encoding. In[Douglis et al. 2004], Kulkarni et.al combine these techniques to first

ACM Transactions on Storage, Vol. V, No. N, July 2006.

22 · Deepak Bobbarjung et al.

eliminate identical objects and blocks; they then identify similar blocks in the remaining set
and apply delta encoding on those blocks. A similar tiered approach is taken in [Jain et al.
2005] to efficiently synchronize replicas. Restoring versions in systems that rely on delta
encoding however can be complicated as it may involve reading a previous fixed version
along with a chain of changes and decoding the required version from the previous version
and the delta chain. In this study, we focus on object partitioning techniques that simply
divide objects into variable sized blocks. Restoring a given version in such schemes will
only involve reading all the individual blocks that comprise that version and reassembling
them.

Finally, data compression techniques[Lelewer and Hirschberg 1987; Ziv and Lempel
1977] eliminate redundancy internal to an object and generally reduce textual data by a
factor of two to six. We can leverage data compression techniques by compressing chunks
that are output by our object partitioning technique. We expect to benefit from compression
just as any other object partitioning technique would.

8. CONCLUSIONS
Existing object partitioning techniques cannot improve storage and bandwidth utilization
without significantly increasing the storage management overheads imposed on the sys-
tem. This observation motivated us to discover a chunking technique that would improve
duplicate elimination over existing techniques without increasing associated overheads.

We have proposed a new chunking algorithm fingerdiff that improves upon the best stor-
age and bandwidth utilization of CDC while lowering the overheads it imposes on the stor-
age system. We have measured storage and bandwidth consumption along with associated
overheads of several CDC and fingerdiff instantiations as they write a series of versions of
several real-world software systems to a content addressable store. For both these bench-
marks, we show that fingerdiff significantly improves the storage and bandwidth utilization
of the best CDC instantiation while also reducing the rate of increase in storage overheads.

Our contention is not that a particular fingerdiff technique is the best choice in all content
based storage engines. But, by allowing for greater variability of block sizes, and by being
able to better localize the changes made to consecutive object versions into smaller chunks,
fingerdiff is able to minimize the size of new data introduced with every version, while
keeping the average size of all chunks relatively large. This in turn allows it to provide the
best storage and bandwidth utilization for a given amount of management overhead.

REFERENCES
AJTAI, M., BURNS, R., FAGIN, R., LONG, D., AND STOCKMEYER, L. 2000. Compactly encoding unstructured

input with differential compression. In IBM Research Report RJ 10187.
BERLEKAMP, E. R. 1968. Algebraic Coding Theory. McGraw Hill.
BLOMER, J., KALFANE, M., KARP, R., KARPINSKI, M., LUBY, M., AND ZUCKERMAN, D. 1995. An xor-

based erasure-resilient coding scheme. Technical report, International Computer Science Institute, Berkeley,
California.

BRODER, A. 1997. On the resemblance and containment of documents. In SEQUENCES ’97: Proceedings of
the Compression and Complexity of Sequences 1997. IEEE Computer Society, 21.

BRODER, A., GLASSMAN, S., MANASSE, M., AND ZWEIG, G. 1997. Syntactic clustering of the web. In Proc.
of the 6th International WWW Conference. 391–404.

BRODER, A. Z. 2000. Identifying and filtering near-duplicate documents. In COM ’00: Proceedings of the 11th
Annual Symposium on Combinatorial Pattern Matching. Springer-Verlag, 1–10.

CEDERQVIST, P. 1992. Version management with cvs. http://www.cvshome.org/docs/manual/.

ACM Transactions on Storage, Vol. V, No. N, July 2006.

Improving Duplicate Elimination in Storage Systems · 23

COX, L., MURRAY, C., AND NOBLE, B. 2002. Pastiche: Making backup cheap and easy. In Proceedings of
Fifth USENIX Symposium on Operating Systems Design and Implementation. Boston, MA.

DOUGLIS, F. AND IYENGAR, A. 2003. Application-specific deltaencoding via resemblance detection. InUsenix
Annual Technical Conference. 59–72.

DOUGLIS, P. K. F., LAVOIE, J., AND TRACEY, J. M. 2004. Redundancy elimination within large collections
of files. In Usenix Annual Technical Conference. 59–72.

GOLDBERG, A. V. AND YIANILOS, P. N. 1998. Towards an archival intermemory. In IEEE Advances in digital
libraries.

HONG, B., PLANTENBERG, D., LONG, D. D. E., AND SIVAN-ZIMET, M. 2004. Duplicate data elimination
in a san file system. In In Proceedings of the 21st IEEE / 12th NASA Goddard Conference on Mass Storage
Systems and Technologies (MSST 2004). 301–314.

HUNT, J. J., VO, K.-P., AND TICHY, W. F. 1998. Delta algorithms an empirical analysis. ACM Transactions
on Software Engineering and Methodology 7, 2, 192–214.

JAIN, N., DAHLIN, M., AND TEWARI, R. 2005. Taper: Tiered approach for eliminating redundancy in replica
sychronization. In Proceedings of the 4th Usenix Conference on File and Storage Technologies (FAST 2005).

KUBIATOWICZ, J., BINDEL, D., CHEN, Y., CZERWINSKI, S., EATON, P., GEELS, D., GUMMADI, R., RHEA,
S., WEATHERSPOON, H., WEIMER, W., WELLS, C., AND ZHAO, B. 2000. Oceanstore: An Architecture
For Global Store Persistent Storage. In Proceedings of the Ninth international Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS 2000). Cambridge, MA.

LELEWER, D. A. AND HIRSCHBERG, D. S. 1987. Data compression. ACM Computing, Springer Verlag
(Heidelberg, FRG and NewYork NY, USA)-Verlag Surveys, ; ACM CR 8902-0069 19, 3.

LV, Q., CAO, P., COHEN, E., LI, K., AND SHENKER, S. 2002. Search and replication in unstructured peer-to-
peer networks. In ICS ’02: Proceedings of the 16th international conference on Supercomputing. ACM Press,
New York, NY, USA, 84–95.

MANBER, U. 1994. Finding Similar Files in a Large File System. In Usenix Winter Conference. 1–10.
MUTHITACHAROEN, A., CHEN, B., AND MAZIERES, D. 2001. A low-bandwidth network file system. In
Symposium on Operating Systems Principles. 174–187.

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, FIPS 180-1. 1995. Secure hash standard.
OUYANG, Z., MEMON, N., SUEL, T., AND TRENDAFILOV, D. Cluster-based delta compression of a collection

of files. In International Conference on Web Information Systems Engineering (WISE).
POLICRONIADES, C. AND PRATT, I. 2004. Alternatives for detecting redundancy in storage systems data. In
Usenix Annual Technical Conference. 73–86.

QUINLAN, S. AND DORWARDS, S. 2002. Venti: a new approach to archival storage. In Usenix Conference on
File and Storage Technologies.

RABIN, M. 1981. Fingerprinting by Random Polynomials. Tech. Rep. TR-15-81, Center for Research in Com-
puting Technology, Harvard University.

ROCHKIND, M. J. 1975. The source code control system. IEEE Trans. on Software Engineering 1(4), 364–370.
SHIVAKUMAR, N. AND GARCÍA-MOLINA, H. 1995. SCAM: A copy detection mechanism for digital docu-

ments. In Proceedings of the Second Annual Conference on the Theory and Practice of Digital Libraries.
TICHY, W. F. 1984. String to string correction problem with block moves. ACM Transactiosn on Software
Engineering 2, 4 (December), 364–370.

TICHY, W. F. 1985. RCS — a system for version control. Software — Practice and Experience 15, 7, 637–654.
W. J. BOLOSKY, S. CORBIN, D. G. AND DOUCEUR, J. R. Single instance storage in windows 2000. In Usenix
Annual Technical Conference.

WEATHERSPOON, H. AND KUBIATOWICZ, J. 2002. Erasure coding vs. replication: A quantitative comparison.
In First International Workshop on Peer-to-Peer Systems (Cambridge, MA).

YOU, L. L. AND KARAMANOLIS, C. 2004. Evaluation of efficient archival storage techniques. In proceedings.
of the 21st IEEE Symposium on Mass Storage Systems and Technologies (MSST).

ZIV, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. IEEE Transactions on
Information Theory 23, 3, 337–343.

ACM Transactions on Storage, Vol. V, No. N, July 2006.

